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General Topology 1

General Topology

Maps of Quasicomponents Induced by a Shape Morphism

Tatjana Atanasova – Pacemska
University ”Goce Delcev” - Stip, Macedonia
tatjana.pacemska@ugd.edu.mk

Abstract: The spaces considered are metric locally compact and sep-
arable. By Q(X) we denote the space of quasicomponents. Using the
intrinsic definition of shape, we give a positive answer to a question
stated at the Borsuk Conference, 2005, Poland, by Nikita Schekutkovski:
is it possible for noncompact spaces to prove the analog of the Bor-
suk’s theorem for components of a compact metric space i.e. is ot true
that for a shape morphism f from X to Y , there exists an unique map
f∧ : Q(X) −→ Q(Y ) such that the restriction of f from Q to f∧(Q) is
also a shape morphism?

This is a joint work with prof. Nikita Shekutkovski, Faculty of Nat-
ural Sciences and Mathematics, “St. Ciril and Methodius” University-
Skopje, Macedonia.

σ-coloring of the Monohedral tiling

Mohamed Basher
Qassim University, College of Science, Dept. of Math., P. O. Box 6644,
Buriedah 51452, Al Qassim, KSA
m e basher@yahoo.com

In this paper we introduce the definition of σ-coloring and perfect σ-
coloring for the plane which is equipped by tiling η. And we investigate
the σ-coloring for the r-monohedral tiling.
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On some open questions related to the κ-Ohio completeness
property
Désiré Basile
Università degli Studi di Catania
basile@dmi.unic.it
Coauthors: Jan van Mill

In 2005, Arkhangel’skii introduced the Ohio completeness property.
We generalize it by introducing the κ-Ohio completeness property. For a
fixed infinite cardinal κ, we say that a space X is κ-Ohio complete if for
every compactification γX of X there is a Gκ-subset S of γX such that
X ⊆ S and for every y ∈ S \X, there is a Gκ-subset of γX that contains
y and misses X. So far, the following are the main open questions:

Question 1. Is κ-Ohio completeness closed-hereditary?
Question 2. Is κ-Ohio completeness finitely productive?
Let κ+ be endowed with either the discrete or the order topology.

We shall prove that the space (κ+)κ+
is not κ-Ohio complete. From this

result we will deduce that, if κ is less than the first weakly inaccessible
cardinal, the space ωκ+

is not κ-Ohio complete.
In relation to Question 2 it is interesting to notice that it is unknown

if even the product of a κ-Ohio complete space with a compact space
is κ-Ohio complete. It turns out that if this is the case then κ-Ohio
completeness is closed-hereditary; so if Question 2 has a positive answer
then Question 1 has a positive answer as well.

Regarding Question 1, we shall give a characterization of closed sub-
spaces of κ-Ohio complete spaces, for uncountable cardinals κ. We do
not know whether such a characterization holds for the countable case.

On spectral spaces
Karlm Belaid
Faculty of Sciences of Gabes,Tunisia.
belaid412@yahoo.fr

A topological space is called spectral if it is homeomorphic to the
prime spectrum of a ring equipped with Zariski topology. We give
necessary and sufficient conditions on the space X in order to get its
one point compactification (resp., Wallman compactification) spectral.
We also deal with topological properties of a space such that its T0-
compactification (resp., prime closed compactification) is spectral.
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Alexander-Spanier Cohomology Groups of Mapping Cone

Anzor Beridze
Shota Rustaveli State University
anzorberidze@yahoo.com

Alexander-Spanier type cohomology groups of mapping cone Cf of
continuous function f : X −→ Y are studied. There is constructed
an isomorphism of cohomology groups induced by cochain map h :
C∗(Cf ; G) −→ C∗(f#; G) from the Alexander-Spanier cochain com-
plex of cone Cf to the algebraic cochain cone C∗(f#; G) of cochain
map f# : C∗(Y ; G) −→ C∗(X; G). Using the obtained results, the
Alexander-Spanier normal cohomology functors are investigated [1].

References

[1] V. Baladze and A. Beridze, On Alexander-Spanier normal cohomology
groups, to appear

Measurable selectors, proximinality and integration of multi-
functions

Bernardo Cascales
Universidad de Murcia and Kent State University
beca@um.es
Coauthors: V. Kadets, J. Rodriguez and M. Raja

Kuratowski and Ryll-Nardzewski’s theorem about the existence of
measurable selectors for multi-functions is a magnificent tool to obtain
measurable selectors of suitable multi-functions; one of the drawbacks
of this result is that separability is required for the range space. In this
lecture we will show how to use, in some cases, descriptive set-theoretic
techniques to overcome the above separability assumption and use Kura-
towski and Ryll-Nardzewski’s theorem to deduce that L1(µ, Y ) is prox-
iminal in L1(µ,X) when Y ⊂ X is a proximinal subspace and the Banach
space X is nice, for instance WCG. Starting again from Kuratowski and
Ryll-Nardzewski’s theorem and inspired by topological results involving
σ-fragmented multi-functions and Baire one functions, we will present
our advances when studying the existence of measurable selectors for
multi-functions whose values are weakly compact subsets of a Banach
space without separability assumptions about the range space: on one
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hand, we characterize multi-functions having strongly measurable selec-
tors; on the other hand, we prove that every scalarly measurable multi-
function admits scalarly measurable selectors. By doing so we solve an
open problem in the area and extend the theory of Pettis integration
for multi-functions that previously was only known in the separable case
to the case of general Banach spaces. We will finish by showing the
parallelism between the techniques presented and some questions arising
again from topology.

Minimal Extension of a Certain Cascade with T0-topological
Phase Space and Continuous Closed Endomorphisms

Jan Chvalina
FEEC Brno University of Technology
chvalina@feec.vutbr.cz
Coauthors: Petr Skorkovský

There is constructed the cascade formed by an action of the additive
monoid of all non-negative integers on the phase set which is a sum
of presheaves of solution spaces of homogeneous ordinary second-order
differential equations of the form y′′+ p(x)y′+ q(x)y = 0, where pairs of
functions [p, q] are running through C(J)× C(J) (the set of all pairs of
continuous functions defined on some interval J of reals). If any presheaf
is extended by a countable chain then there exists infinitely many T0-
topologies T on the new phase set ETA of the obtained cascade such that
its endomorphism monoid coincides with the monoid of all continuous
closed transformations of the space (ETA, T ).

On a Subset System-based Generalization of Topology

Mustafa Demirci
Akdeniz University, Faculty of Sciences and Arts, Department of Math-
ematics, 07058-Antalya/TURKEY
demirci@akdeniz.edu.tr

For a quadruple S of subset systems, the aim of this talk is to in-
troduce S-systems generalizing topologies, co-topologies, pretopologies,
closure systems and kernel systems. We will mainly focus on some ele-
mentary relations between S-systems and ordered structures in the level
of categories.
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Interior and Closure Operators on Texture Spaces
Murat Diker
Hacettepe University Department of Mathematics 06532 Beytepe Ankara
mdiker@hacettepe.edu.tr
Coauthors: Ş. Dost, A.Altay Uğur

This talk is devoted to a discussion of closure operators for the theory
of texture spaces in the sense of [2]. The recent works on fuzzy closure
spaces can be found in [4,6,7]. In particular, a generalization of L-closure
spaces and the natural counterparts of the Lowen functors wL and iL are
studied in a fixed-basis setting in [7] and here the category L-CLOSURE
is defined considering the closure operators on LX and the morphisms as
Zadeh type powerset operators between the objects for a fixed Hutton
algebra L. Recall that Hutton algebras and the mappings preserving the
arbitrary meets, joins and involution form a category which is denoted by
HutAlg, and HutAlgop and Fuzlat are equivalent categories [3,5]. Es-
sentially, here we consider the closure operator on a Hutton algebra L and
in a natural way, we define the category HCL of Hutton closure spaces
taking the morphisms of the category HutAlgop with the corresponding
continuity condition. In this case, the categories L-CLOSURE and H
can be considered as a subcategory and a full subcategory of HCL, re-
spectively – H denotes the category of Hutton spaces [3]. It is known
that H has products and sums [1,3]. More generally, we prove that the
category HCL has also products and sums. Finally, we show that the
functor wL can be also given in a textural framework for L = [0, 1].
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A de Vries-type duality theorem for locally compact spaces

Georgi Dimov
Faculty of Mathematics and Informatics, Sofia University
gdimov@fmi.uni-sofia.bg

A duality theorem for the category of locally compact Hausdorff
spaces and continuous maps which generalizes the well-known Duality
Theorem of de Vries will be presented. Some applications will be given.
The main between them are the following: (a) a slight generalization of
the Stone’s results concerning the extension of his Duality Theorem to
the category of locally compact zero-dimensional Hausdorff spaces; (b) a
completion theorem for local contact Boolean algebras; (c) a description
of the spaces which are co-absolute with the (zero-dimensional) Eberlein
compacts.

Preimage-wise convergences and group topologies coarser than
the Isbell topology

Szymon Dolecki
Mathematical Institute of Burgundy, Burgundy University, Dijon, France
dolecki@u-bourgogne.fr
Coauthors: F. Jordan, F. Mynard

Convergences and topologies on functions spaces defined with the
aid of collections of compact families on the underlying spaces are stud-
ied. Pointwise convergence, compact-open topology, Isbell topology and
the natural convergence are instances. They are characterized setwise
in terms of the corresponding convergences and topologies on hyper-
spaces. Transfer of properties between function spaces, hyperspaces and
underlying spaces are established. This transfer hinges on the continuity
of translations in the functional space. Pointwise convergence, compact-
open topology and the natural convergence are translation-invariant, but
the Isbell topology is not in general. We study conditions under which
the Isbell topology is translation-invariant (group topology). We con-
struct a maximal hereditary collection of compact families, for which
the functional space is a group (equivalently, a topological vector space)
included in the Isbell topology. The Isbell topology coincides with this
vector space topology if and only if the underlying space is infracon-
sonant. Examples based on measure theoretic methods, show that the
mentioned vector topology can be strictly finer than the compact-open
topology.
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Causpaces
Othman Echi
Department of Mathematics, Faculty of
othechi@yahoo.com

Alexandroff spaces (“Diskrete Räume”) of Alexandroff possess a struc-
ture suitable for approximating bounded portions of physically impor-
tant manifolds. Also, there has recently been some interest from physi-
cists in using category theory to model quantum physics.

This paper is devoted to topological and categorical studies of some
typical Alexandroff spaces, hoping that this will be of interest in Theo-
retical Physics.

Let X be a set and f : X −→ X be a mapping. We denote by A(f)
the Alexandroff topology defined by the Kuratowski closure µf : 2X −→
2X such that µf (L) =

⋃
n∈N

fn(L).

For A topological space X, and x, y ∈ X such that y ∈ {x}, we set

[x, y] := { z ∈ X | {y} ⊆ {z} ⊆ {x} }.
We say that X is a causpace if whenever y ∈ {x}, the set [x, y] is finite.

By a J -space, we mean an Alexandroff topological space X satisfying
the following properties:

(i) X is a causpace.

(ii) If [x, x] 6= {x}, then [x, x] = {x}.
(iii) If [x, x] = {x} and x is not closed, then {x} \ {x} has a generic

point (i.e., there exists y ∈ {x} \ {x} such that {x} \ {x} = {y}).

In this paper, we prove that (X, T ) is a J -space if and only if there
is a map f : X −→ X such that T = A(f).

For convenience, let us call an endomorphism each pair (X, f), where
X is a set and f : X −→ X is a map. We let End be the category
whose objects are endomorphisms; and an arrow (called endo-arrow)
from (X, f) into (Y, g) is a map ϕ : X −→ Y such that g ◦ ϕ = ϕ ◦ f .

Let f : X −→ X be a map. We say that (X, f) is a J -endomorphism
if Fix(f) = Fix(fn), for each n ∈ N, where Fix(f) is the set of all fixed
points of f . We let JEnd be the full subcategory of End whose objects
are J -endomorphisms. We prove that JEnd is a reflective subcategory
of End.

Let us denote by JTop0 the category whose objects are J -spaces
satisfying the separation axiom T0 and arrows are injective closed con-
tinuous maps. Then we show that JTop0 is isomorphic to JEnd by
changing arrows in JEnd into injective endo-arrows.
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C(τ)-cosmic spaces

Dimitrios N. Georgiou
University of Patras, Department of Mathematics, 265 04 Patras, Greece
georgiou@math.upatras.gr
Coauthors: S.D. Iliadis and A.C. Megaritis

In this paper we introduce and study the notion of C(τ)-cosmic space,
where τ is an infinite cardinal. Particularly, we prove that in the class
of all C(τ)-cosmic spaces there exists universal element.

Work supported by the Caratheodory Programme of the University of
Patras.

Some results on Best Approximation in Fuzzy Metric Spaces

Hamid Mottaghi Golshan
Iran, Arak, emam street, Ashtian university.
motgolham@gmail.com

Veeramani studied best approximation problem in fuzzy metric spaces
based on a notion of fuzzy metric spaces introduced by George and Veera-
mani. In this paper we are going to prove some topological theorems and
generalizes some definitions about t-best approximation.

On convergence in fuzzy metric spaces

Valent́ın Gregori
Instituto Universitario de Matemática Pura y Aplicada, Universidad
Politécnica de Valencia
vgregori@mat.upv.es
Coauthors: Samuel Morillas and Almanzor Sapena

Since the class of fuzzy metrics in the sense of George and Veeramani
includes in its definition a parameter t, it allows to introduce novel (fuzzy
metric) concepts with respect to the classical metric concepts. In this
sense, D. Mihet modified the definition of convergence and obtained a
more general concept which is called p-convergence. In this talk, we
characterize those fuzzy metric spaces, that we call principal, in which
both concepts agree. Later, we introduce and study a concept of p-
Cauchy sequence. Some illustrative examples, including a non-principal
fuzzy metric space, which is not completable, are given.



General Topology 9

On Fuzzy Λb Sets and Fuzzy Λb Continuity

Gizem Günel
Department of Mathematics, Faculty of Science, Ege University, Izmir,
Turkey
gizemgunell@gmail.com
Coauthors: Gülhan Aslım

The aim of this talk is to introduce a new class of fuzzy open sets
called fuzzy Λb sets which includes the class of fuzzy γ-open sets due
to Hanafy [I. M. Hanafy, F uzzy γ-open sets and fuzzy γ-continuity, J.
Fuzzy Math. vol. 7 (1999) 419–430]. We also define a weaker form of
fuzzy Λb sets termed as fuzzy locally Λb sets. By means of these new
sets, we present the notions of fuzzy Λb continuity and fuzzy locally Λb

continuity which are weaker than fuzzy γ-continuity due to Hanafy and
furthermore we investigate the relationships between these new types of
continuity and some others.

Topological Algebraic Structure on R with The Density Topol-
ogy

Robert W. Heath
University of Pittsburgh
rwheath@pitt.edu
Coauthors: R.W. Heath and Thomas J. Poerio

The density of a subset E of R at a point x is defined to be the limit,
as h goes to 0, of m1(E∩(x−h,x+h))

2h , where ml is Lebesgue measure. In the
density topology a set is open if the density of the set is 1 at each of its
points. Tall [Pacific Journal, 1976] showed that a subset of R is connected
in the density topology iff it is connected in the open interval topology.
In his dissertation Poerio used Hugo Steinhaus’s theorem (Fundamenta,
1920) to show that neither {R, +} nor {R+,×} can be a cancellative
topological semigroup in the density topology. We show that there can
be no topological group on R with the density topology and examine the
general case for abstract cancellative topological semigroups on R with
the density topology.
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Preservation of completeness by some continuous maps.

Petr Holický
Department of Math. Anal., Charles Univ., Prague
holicky@karlin.mff.cuni.cz

Let f : X → Y be a continuous mapping of a completely metrizable
space X onto a metrizable space Y . If every open neighborhood G of any
countable metrically discrete set D contains a set S such that D ⊂ S ⊂ G
and f(S) is resolvable (e.g., it belongs to the algebra generated by open
sets), then Y is completely metrizable.

This is a result of the paper P. Holický and R. Pol, On a question
by Alexey Ostrovsky concerning preservation of completeness, which was
submitted for publication.

We shall present this result and some related ones, e.g., on Čech
complete spaces X.

On Minimal Semi-Open Sets

Sabir Hussain
Department of Mathematics, Islamia University Bahawalpur, Pakistan.
Present Address: Department of Mathematics, Yanbu University College
Yanbu Al Sianiyah, Saudi Arabia.
sabiriub@yahoo.com
Coauthors: Takashi Noiri and Bashir Ahmad

We introduce and discuss minimal semi-open sets in topological spaces
which generalize minimal open sets defined and discussed by F. Nakaoka
and N. Oda [3]. We establish some basic properties of minimal semi-open
sets .We obtain some properties of pre semi-open sets using properties
of minimal semi-open sets. As an application of a theory of minimal
semi-open sets, we obtain a sufficient condition for a semi-locally finite
space to be a pre semi-Hausdorff space
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Some problems on the base dimension I

Stavros D. Iliadis
University of Patras, Department of Mathematics, 265 04 Patras, Greece
iliadis@math.upatras.gr

Let X be a completely regular space and C a normal base for the
closed subsets of X. The base dimension I of X by C is an element
I(X, C) of the class O ∪ {−1,∞}, where O is the class of all ordinals,
defined by induction by the following conditions:

(1) I(X, C) = −1 if and only if X = ∅.

(2) I(X, C) ≤ α, where α is an ordinal, if and only if for every pair
(F,G) of disjoint elements of C there exists a screening (L,H) of
(F,G) such that I(L∩H, C|L∩H) < α, where C|L∩H = {(L∩H)∩
F : F ∈ C}.

Therefore, I(X, C) = ∞ if and only if the relation I(X,C) ≤ α is not
true for every ordinal α.

We shall consider some properties of the base dimension I and put
some problems. The base dimension I is studied in the following works:
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On some categories arising in the theory of locally compact
extensions

Elza Ivanova
Faculty of Mathematics and Informatics, Sofia University
elza@fmi.uni-sofia.bg
Coauthors: G. Dimov

We give a direct proof of the fact that the following three cate-
gories are isomorphic: the category of separated local proximity spaces
and equicontinuous mappings, the category of LC-proximity spaces and
SR-proximally continuous functions, and the category of separated L-
supertopological spaces and supertopological mappings. Many basic
statements of the theory of Efremovich proximity spaces are generalized
for the class of local proximity spaces.

Symmetric Topological Spaces and Lattice Equivalence

Sami Lazaar
Departement of Mathematics, faculty of Sciences of Tunis, University
Tunis-El Manar, “Campus Universitaire”, 2092 Tunis, Tunisia
salazaar72@yahoo.fr

In this paper, we characterize Symmetric spaces (or R0-spaces ) by
lattice equivalence. We show that a topological space X is Symmetric if
and only if X and T1(X) are lattice equivalence. It is also proved that
R0 is not a lattice-invariant property, but the property “R0 and quasi
sober ” is a lattice -invariant property.

On covering homomorphisms

Vlasta Matijević;
Department of Mathematics, University of Split
vlasta@pmfst.hr

Let Y be a connected group and let f : X → Y be a covering mapping
from a connected space X. We say that f is a covering homomorphism
if it is possible to define a multiplication · on X in such a way that X
becomes a topological group and f becomes a homomorphism of topo-
logical groups. It is well-known that each covering mapping f : X → Y
from a pathwise connected space X on a pathwise connected, locally
pathwise connected group Y is a covering homomorphism. In 1972,
R.H. Fox introduced a notion of on overlay mapping in order to extend
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the classical classification theorem for covering mappings to arbitrary
connected metric spaces. Using shape-theoretic techniques we show that
a covering mapping f : X → Y on a compact connected group Y is a
covering homomorphism if and only if f is an overlay mapping. In par-
ticular, each finite-sheeted covering mapping f : X → Y on a compact
connected group Y is a covering homomorphism.

Continuous Homology

Leonard Mdzinarishvili
Department of Mathematics, Faculty of Informatics and Control Sys-
tems, Georgian Technical University, 77, Kostava St., Tbilisi, Georgia
maia@rmi.acnet.ge

J. Milnor [1] on the category AC of compact pairs (X, A) defined the
homology HM

∗ and proved that if (X, A) is compact metrical pair, then
his homology is isomorphic to the Steenrod homology. We define continu-
ous homology h∗ and prove that if (X, A) is compact pair and coefficients
group is the topological abelian group S1 – one-dimensional sphere, then
there is an isomorphism h∗(X,A, S1) ≈ HM

∗ (X,A, R), where R is the
topological abelian group of real numbers.

References
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On some positional dimension-like functions

Athanasios C. Megaritis
University of Patras, Department of Mathematics, 265 04 Patras, Greece
megariti@master.math.upatras.gr
Coauthors: D.N. Georgiou and S.D. Iliadis

In [1] some positional dimension-like functions are defined. These
functions were studied only with respect to the property of universality.
Here, we first compare and then study these functions with respect to
other standard properties of dimension theory (subspace, product, and
sum theorems).
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2000 Mathematics Subject Classification: 54B99, 54C25
Work supported by the Caratheodory Programme of the University of
Patras.
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Examples of fuzzy metrics and applications
Samuel Morillas
Instituto Universitario de Matemática Pura y Aplicada, Universidad
Politécnica de Valencia
smorillas@mat.upv.es
Coauthors: Valentn Gregori and Almanzor Sapena

Fuzzy metrics in the sense of George and Veeramani, are interesting
for Engineering problems because of their usefulness within fuzzy sys-
tems. In this talk, we provide a series of new examples of fuzzy metrics
which are interesting because of their fuzzy metric properties. As an
example of engineering application, we use these fuzzy metrics for color
image filtering by means of a vector ordering approach. We show that
the obtained results are promising.

Folding and fundamental group of the dual graphs

Shokry Nada
Qatar University
snada@qu.edu.qa
Coauthors: M. El-Ghoula, and E.H.Hamouda

In this paper the folding of the planar graphs is discussed. Relations
between the folding of the graph and the duality are deduced. The
fundamental group of the dual graph is introduced. Theorems governing
these relations are achieved.
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On Lindeöf spaces of continuous functions

Oleg Okunev
BUAP, Mexico
oleg@servidor.unam.mx

A few theorems about the Lindelöf property of spaces of continuous
functions in the topology of pointwise convergence on a Tychonoff space
and on its subspaces.

Set-open topology

Alexandr Osipov
Institute of Mathematics and Mechanics, Ural Branch of the Russian
Academy of Sciences
oab@list.ru

We study set-open topology on the set of all continuous real-valued
functions on a Tychonoff space in a general setting and compare this
topology with several well-known and lesser known topologies.

Metrizable images of the Sorgenfrey line

Mikhail Patrakeev
Institute of Mathematics and Mechanics, Ural Branch of Russian
Academy of Sciences, Ekaterinburg, Russia
patrakeev@mail.ru

Recall that the Sorgenfrey line S is the real line topologized by a basis
of half-open intervals closed on the left. We study the following question:
what are metrizable images of S under different kinds of continuous maps.

In 1984 D. B. Motorov proved [1] that metrizable images of S are
exactly the A-sets. In 1988 S. A. Svetlichnyj proved [2] that every open
metrizable image of S is polish space.

We give the characterizations of metrizable images of the Sorgenfrey
line under open maps, under closed maps, under closed-and-open maps,
under quotient maps and under one-to-one maps.
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[2] S.A. Svetlichnyj, Projective completeness and projective classes of
spaces, Vestn. Mosk. Univ., Ser. I 1988, No.1, 75-77.

On hereditarily indecomposable partitions in cylinders over
continua

MirosÃlawa Reńska
University of Warsaw, Institute of Mathematics
mrenska@mimuw.edu.pl

J. Krasinkiewicz asked in [Krasinkiewicz, On approximation of map-
pings into 1-manifolds, Bull. Pol. Acad. Sci. 44 (1996), 431-440]
whether for every metrizable continuum X there exists a partition L
between the top and the bottom of the cylinder X × I such that L is
a hereditarily indecomposable continuum. We answer this question in
the negative. We also discuss the class of all continua X satisfying the
condition described above.

Extension Theory and the First Uncountable Ordinal Space

Leonard R. Rubin
University of Oklahoma
lrubin@ou.edu

Let [0, Ω) denote the first uncountable ordinal space. Suppose that K
is a CW-complex, Z is a compact metrizable space, and K is an absolute
extensor for Z. This means that for each closed subset A of Z and map
f : A → K, there exists a map F : Z → K that extends f . This is
the fundamental notion of extension theory. It allows one to unify the
theories of covering dimension dim and cohomological dimension dimG

modulo an abelian group G by varying the CW-complex K.
Let Y = Z× [0, Ω). We shall discuss our result that K is an absolute

extensor both for Y and β(Y ). Using K = Sn, one may conclude that
if dimZ ≤ n, then the same is true of both Y and β(Y ). A parallel
result is true for dimG when one puts K = K(G,n), the latter being an
Eilenberg-MacLane CW-complex of type (G,n). That is, if dimGZ ≤ n,
then both dimGY ≤ n and dimGβ(Y ) ≤ n.
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Menger subsets of the Sorgenfrey line

Masami Sakai
Kanagawa University
sakaim01@kanagawa-u.ac.jp

Lelek noted in 1964 that, if L is a Lusin set in the real line, then the
space L with the subspace topology of the Sorgenfrey line has the Menger
property. We further investigate Menger subsets of the Sorgenfrey line.
We give a sufficient or necessary condition for a subset of the Sorgenfrey
line to have the Menger property.

Fixed point theorems and (n−)continuous L∗-operators

Andrzej Szymanski
Slippery Rock University
andrzej.szymanski@sru.edu
Coauthors: Wladyslaw Kulpa

An L∗-operator on a topological space X is a function Λ : [X]<ω →
2X satisfying the following condition: If A ∈ [X]<ω and {Ux : x ∈ A}
is an open cover of X, then there exists a non-empty B ⊆ A such that
Λ (B)∩⋂ {Ux : x ∈ B} is non-empty. An L∗-operator Λ on a topological
space X is said to be (n−) continuous if for each point p ∈ X and
each neighborhood U of p there exists a neighborhood V of p such that
Λ (A) ⊆ U for each A ∈ [V ]<ω (for each A ∈ [V ]≤n+1). We are going to
present some fixed point and equilibrium theorems on topological spaces
that admit (n−) continuous L∗-operators. We will also give an example
of an L∗-operator on a metric space which is n − continuous for each
n ≥ 1 and not continuous.

Essentially Pseudoradial Spaces

Gino Tironi
Department of Mathematics and Informatics
tironi@units.it
Coauthors: Alessandro Soranzo

The notion of essential sequence and essential space is given within
the class of pseudoradial spaces. If κ is a regular cardinal, we say that a
κ-sequence 〈xα〉α<κ in a topological space is essential if it is injective,
converging and {xα : α < κ} = {xα : α < κ} ∪ {x} , where x := lim xα
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is different from all xα. This concept, by which we try to clarify the be-
haviour of convergent (long) sequences, is confronted with the concepts
of thin and free sequence and shown independent of them. Various ex-
amples and implications are proved among classes of Whyburn, weakly
Whyburn and essentially pseudoradial (radial, semiradial, almost radial)
spaces. It is shown that essentially radial spaces are the same as radial
and Whyburn spaces. Some results are given concerning the existence
of converging long sequences in topological spaces where no usual con-
verging sequence exist.

On Some Closed Sets in Ideal Minimal Spaces

Esra Dalan Yıldırım
Department of Mathematics, Faculty of Science, Yasar University, Izmir,
Turkey
esradalan83@gmail.com
Coauthors: Oya Bedre Özbakır

The aim of this talk is to introduce ideal minimal space and to inves-
tigate the relationships between minimal space and ideal minimal space.
We define some closed sets in these spaces to establish their relation-
ships. Basic properties and characterizations related to these sets are
given.

On almost GP -spaces

Mohammad Reza Ahmadi Zand
Department of Mathematics, Yazd University, Yazd, Iran
mahmadi@yazduni.ac.ir

A T1 topological space X is called an almost GP -space if every
dense Gδ-set of X has nonempty interior. The behaviour of almost GP -
spaces under taking subspaces and superspaces, images and preimages
and products is studied. If each dense Gδ-set of an almost GP -space
X has dense interior in X, then X is called a GID-space. In this pa-
per, some interesting properties of GID-spaces are investigated. We will
generalize some theorems that hold in almost P -spaces.
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The limits of convergent sequences in Bell’s compactification

Evgeniy Bastrykov
Russia, Izhevsk, Promyshlennaya, 25-80, 426063
vporoshok@gmail.com

We regard a compactification βN of a countable discrete space N with
ccc non-separable remainder, constructed by M. G. Bell. We prove the
necessary and sufficient conditions for the point x ∈ βN \N be a limit of
convergent sequence of points from N ⊂ βN.

Regularity properties on the second level of the projective hi-
erarchy

Joerg Brendle
Kobe University and Bonn University
joergbrendle@gmail.com
Coauthors: Benedikt Löwe (University of Amsterdam) Yurii Khomskii
(University of Amsterdam)

Regularity properties of sets of reals, like Lebesgue measurability, the
Baire property, or the Ramsey property, typically hold for analytic and
and coanalytic sets, while they usually fail in the constructible universe
L for ∆1

2-sets. In fact, regularity properties for sets on the second level
of the projective hierarchy (i.e. for ∆1

2 and Σ1
2-sets) can often be char-

acterized as transcendence statements over L. For example, the Baire
property for ∆1

2-sets is equivalent to saying that there is a Cohen real
over every L[x]. Such characterizations are very useful for establishing
implications and non-implications between various regularity properties
on the second level of the projective hierarchy.

In this talk, I will give a brief survey of this area of research, and
then touch upon some recent results on
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• the Baire property in the eventually different topology on the sec-
ond level of the projective hierarchy (joint work with Benedikt
Löwe),

• polarized partition properties on the second level of the projective
hierarchy (joint work with Yurii Khomskii).

Some notes about Katowice problem

David Chodounský
Univerzita Karlova v Praze, Filozofick fakutla, Katedra logiky
david.chodounsky@matfyz.cz

Katowice problem: Is it consistent with ZFC that ω∗ is homeomor-
phic to ω∗1? This can be equivalently stated as: Can Boolean algebra
P(ω)/F in be homeomorphic to P(ω1)/F in? Some consequences of ex-
istence of such homeomorphism are d = ω1 and the existence of a strong
Q-sequence of size ω1 (also called uniformizable AD-system). There is a
model of ZFC where both these consequences hold true.

Spaces which are Selectively Separable

Alan Dow
UNC Charlotte
adow@uncc.edu
Coauthors: Doyel Barman

M. Scheepers introduced the notion of a space being selectively sep-
arable: for each countable sequence of dense subsets, it is possible to
select a finite subset of each with dense union. It is also interesting to
strengthen this notion by reformulating it as a two player game and ask-
ing about winning strategies. We consider real and consistent examples
of spaces with or without these properties.
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Homeomorphisms of Bagpipes

David Gauld
The University of Auckland
d.gauld@auckland.ac.nz

A quarter of a century ago Nyikos gave in his Bagpipe Theorem
a decomposition of an ω-bounded surface Σ into a union of a com-
pact surface with finitely many holes, K, and the same number of long
pipes, P1, . . . Pn. Recently I have been exploring the group of homeomor-
phisms of non-metrisable manifolds and especially its quotient subgroup,

the mapping class group M(Σ). If Σ = K ∪
(

n⋃

i=1

Pi

)
is a Nyikos de-

composition of an orientable ω-bounded surface and h : Σ → Σ is an
orientation-preserving homeomorphism then h is isotopic to a homeo-
morphism g : Σ → Σ such that g(K) = K and gm is the identity on
∂K for some positive integer m. Thus the structure of M(Σ) splits into
those of the mapping class groups of homeomorphisms of compact sur-
faces with boundary and of long pipes. Some homeomorphisms having
finite torsion will be considered.

Some properties of Bell’s compactification of N.

Anatoly Gryzlov
Udmurt State University
gryzlov@uni.udm.ru

We regard some properties of a compactification βN of countable
discrete space N with ccc non-separable remainder, constructed by M.
G. Bell. We prove some facts about subsets of N ⊂ βN, whose clo-
sures in βN are homeomorphic to Čech-Stone compactification of N and
subsets of N ⊂ βN whose closures are homeomorphic to a convergent
sequence.
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A concrete co-existential map that is not confluent.

Klaas Pieter Hart
TU Delft
k.p.hart@tudelft.nl

The notion of a co-existential map between compact spaces is ob-
tained by dualizing the notion of an existential embedding from Model
Theory. Because these embeddings are well-behaved one would expect
their duals to be well-behaved as well. We describe a very concrete ex-
ample of a co-existential map between continua that is not confluent;
it is inspired by but easier to visualize than an example constructed by
Paul Bankston.

On a problem of Fremlin

Michael Hrušák
UNAM
michael@matmor.unam.mx

A family D of finite subsets of κ is 1/2-filling if it is hereditary and
every finite subset of κ contains a subset in D whose size is at least half
of the size of the original set. A subset of κ is D-homogeneous if all of
its finite subsets are in D.

We will discuss the following problem of D. Fremlin: For which λ ≤ κ
is it true that every 1/2-filling family D of finite subsets of κ has a D-
homogeneous set of size λ.

Interpolation of κ-compactness

István Juhász
Alfred Renyi Institute of Mathematics
juhasz@renyi.hu
Coauthors: Zoltán Szentmiklóssy

We call a topological space κ-compact if every subset of size κ has a
complete accumulation point in it. Let Φ(µ, κ, λ) denote the following
statement: µ < κ < λ = cf(λ) and there are λ subsets of κ of size µ,
say {Sξ : ξ < λ}, such that |{ξ : |Sξ ∩ A| = µ}| < λ whenever A is any
subset of κ of cardinality less than κ. We show that if Φ(µ, κ, λ) holds
and the space X is both µ-compact and λ-compact then X is κ-compact
as well. Moreover, from PCF theory we deduce Φ(cf(κ), κ, κ+) for every
singular cardinal κ. As a corollary we get that a linearly Lindelöf and
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ℵω-compact space is uncountably compact, that is κ-compact for all
uncountable cardinals κ.

Galois-Tukey connections involving sets of metrics

Masaru Kada
Osaka Prefecture University
kada@mi.s.osakafu-u.ac.jp

In our paper [Kada et al., Topology Appl. 153(2006), 3313-3319],
we studied the smallest cardinality of a set of compatible metrics on a
metrizable space X which enables the approximation to the Stone-Cech
compactification of X by corresponding Smirnov compactifications. We
will refine the results in this paper from the viewpoint of generalized
Galois-Tukey connections, and investigate the connections among order
structures of compatible metrics of separable metrizable spaces and other
order structures.

On topologically induced b-convergences

Dieter Leseberg
TU Braunschweig Universittsbibliothek, Postfach 3329, D-38023 Braun-
schweig, Germany
d.leseberg@tu-bs.de

In 1966 Lodato raises the question whether it is possible to display
a set of axioms for a binary relation on the powerset of a set X so that
these postulates are being satisfied iff there exists a topological space Y
in which X can be embedded such that subsets A,B are near in X iff their
closures meet in Y. Then he gives an answer by introducing the concept
of the later so called Lodato proximity spaces. Afterwards, in 1975,
Bentley generalized this theorem to bunch-determined nearness spaces.
In this connection we also recall that each topology on a set X, given by
a closure operator “cl” , defines a compatible Leader proximity on it by
setting B is near to A iff B meets the closure of A. In 1964 Doitchinov
introduced the notion of supertopological spaces in order to construct
a unified theory of topological and proximity spaces. As an application
he shows that the compactly determined Hausdorff-extensions of a given
topological space are closely related to a special class of supertopologies
defined as b-supertopologies. But, all the above mentioned structures
are special cases of the so- called b-convergence spaces, moreover uniform
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convergences in the sense of Preuss also can be dealt with. Consequently,
we are going to solve the considered theorems in the broader realm of
this new type of convergence!

Ordered topological C-(resp I-)spaces and generalized metric
spaces

Zechariah Mushaandja
University of Cape Town, Rondebosch, Cape Town, South Africa
zmushaandja@yahoo.com
Coauthors: Professor Hans-Peter Kunzi (supervisor)

An ordered topological space (X, T ,≤) is called a C-space iff d(F )
and i(F ) are closed whenever F is a closed subset of X. It is called an
I-space iff d(G) and i(G) are open whenever G is an open subset of X. In
this talk we discuss some results on ordered topological spaces which are
inspired by the well-known Hanai-Morita-Stone(HMS) Theorem. Among
others, we present a partial analogue of HMS by showing that given an
ordered C-space (X, T , 6) such that T is a metrizable topology then
the upper and the lower topologies denoted by T ] and T [ respectively
are first countable if and only if for each x ∈ X, the boundaries of
d(x) and i(x) are compact in (X, T ). We also introduce the notion of
a U-friendly partial order on a uniform space (X,U), and then show
that for each such uniform space the corresponding bitopological space
(X, (T (U))\, (T (U))[) is quasi-uniformizable.
[ i(x) = {y ∈ X | y ≥ x}, T ] = {O ∈ T |O is an upper set }, d(x) and
T [ are defined dually ]

Cardinal sequences of scattered spaces

Lajos Soukup
Alfrd Rnyi Institute of Mathematics, Hungarian Academy of Sciences
soukup@renyi.hu
Coauthors: Juan Carlos Martinez

Based on some ideas of Piotr Koszmider we construct first some
morass-like structures, then some Delta-functions with some strong prop-
erties. Using these Delta-functions we show that it is consistent that the
continuum is arbitrarily large and the family of cardinal sequences of lo-
cally compact scattered spaces contains all the sequences 〈sα : α < ω2〉
of cardinals satisfying ω ≤ sα ≤ 2ω for all α.



Set-Theoretic Topology 25

Extensions of Compactness of Tychonoff Powers of 2 in ZF

Eleftherios Tachtsis
University of the Aegean, Dept. of Statistics and Actuarial-Financial
Mathematics
ltah@aegean.gr
Coauthors: Kyriakos Keremedis

We work in ZF, i.e., Zermelo-Fraenkel set theory without the Axiom
of Choice (AC), and study the set-theoretic strength of compactness
as well as extensions of compactness such as countable compactness,
and compact-n, n ∈ N, for Tychonoff products of the discrete space
2 = {0, 1}.

A monotone version of monolithity

Vladimir V. Tkachuk
Universidad Autonoma Metropolitana de Mexico
vova@xanum.uam.mx
Coauthors: O.T. Alas, R.G. Wilson

This is a joint work with O. Alas and R. Wilson. We introduce mono-
tonically monolithic and strongly monotonically monolithic spaces. It
turns out that every monotonically monolithic space is a D-space; be-
sides, some spaces have D-property precisely because they are mono-
tonically monolithic. In particular, if X is a Lindelöf Σ-space then ev-
ery subspace of Cp(X) is monotonically monolithic. Strong monotone
monolithity is implied by existence of a point-countable base and some
classical results about spaces with point-countable base are valid for
strongly monotonically monolithic spaces. We will show, among other
things that every countably compact strongly monotonically monolithic
space is compact and metrizable.
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o-Boundedness of free topological groups

Lyubomyr Zdomskyy
Kurt Goedel Research Center for Mathematical Logic at the University
of Vienna
lzdomsky@logic.univie.ac.at
Coauthors: Taras Banakh, Dusan Repovs

Assuming the absence of Q-points (which is consistent with ZFC) we
prove that the free topological group F (X) over a Tychonov space X
is o-bounded if and only if every continuous metrizable image T of X
has the property Ufin(O, Ω) (the latter means that for every sequence
< un : n ∈ ω > of open covers of T there exists a sequence < vn : n ∈ ω >
such that vn is a finite subset of un and for every finite subset F of X
there exists n with the property F ⊂ ∪vn). This characterization gives a
consistent answer to a problem posed by C. Hernandes, D. Robbie, and
M. Tkachenko in 2000.
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Coshape theory and applications
Vladimer Baladze
Department of Mathematics, Faculty of Mathematics and computers sci-
ences, Shota Rustavely, Batumi State University, 35, Ninoshvili str.,
Batumi 6010, Georgia
vbaladze@gmail.com

The coshape theory, as a shape theory is a spectral homotopy theory.
The notion of coshape of a space was introduced by T. Porter. The alter-
native definitions of coshape are given in the papers of A. Deliany and P.
Hilton, Yu.T. Lisica, and V.Baladze. The shape and coshape functors of
topological spaces, which are meaningful exstensions of homotopy func-
tor of spaces having the homotopy type of polyhedras, CW-complexes or
ANR-spaces, play important roles in geometric topology. The coshape
theory is closely connected with the extensions of (co)homotopy and
(co)homology functors from the category of spaces having the homo-
topy type of polyhedras to the category of all topological spaces. In
particular, the spectral (co)homotopy groups and the spectral singular
(co)homology groups of spaces are invariant functors of coshape theory.
Besides, the (co)homotopy and (co)homology inj-groups and pro-groups
of spaces also induce coshape invariant functors. Note that the inj-
groups and pro-groups are important coshape invariants because they
contain much more information about the direct and inverse systems
than their limits, even if these limits exist. The problem of extension
of functors from the subcategory of spaces having the homotopy type of
good spaces to the category of general topological spaces is one of the
important problems of algebraic topology. The achievements in the so-
lution of this problem have interesting applications in different branches
of modern topology and algebra. Our talk is devoted to coshape theory
and its applications. It consists of two parts and deal to the following
questions:

Part I. Coshape theory

1. Abstract coshape category.
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2. Topological coshape category.

3. Coshape of map.

Part II. Applications

1. Extensions of functors.

2. Exact sequences of inj-groups of spaces and maps.

3. The relative Hurewicz theorem in coshape theory.

How does Universality of coproducts depend on their size?

Reinhard Börger
FernUniversität in Hagen, Germany
Reinhard.Boerger@FernUni-Hagen.de
Coauthors: Arno Pauly

For a regular cardinal a, we give an example of a category of uniform
spaces, in which coproducts of size a are not universal, but smaller ones
are.

Quasi-uniformities as lax proalgebras

Maria Manuel Clementino
CMUC/University of Coimbra, Portugal
mmc@mat.uc.pt
Coauthors: Dirk Hofmann, University of Aveiro, Portugal

In this talk we will focus on the study of quasi-uniform spaces as
lax proalgebras, in the sense of [CHT]. In particular we will show that
Cauchy-completeness can be viewed as (categorical) Lawvere-complete-
ness (as detailed in [CH]) and we will generalize Salbany’s completion
monad [S].

References

[CH] M.M. Clementino and D. Hofmann, Lawvere completeness in Topol-
ogy, Appl. Categ. Structures 17 (2009) 175-210
[CHT] M.M. Clementino, D. Hofmann and W. Tholen, One setting
for all: metric, topology, uniformity, approach structure, Appl. Categ.
Structures 12 (2004) 127-154
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[S] S. Salbany, The completion monad and its algebra, Comment. Math.
Univ. Carolin. 23 (1982) 301-311.

The semicontinuous quasi-uniformity of a frame revisited
Maria João Ferreira
University of Coimbra
mjrf@mat.uc.pt
Coauthors: Jorge Picado (University of Coimbra)

In this talk we present a new treatment of the pointfree version of
the semicontinuous quasi-uniformity [1] based on the new tool of the
ring of arbitrary (not necessarily continuous) real-valued functions made
available recently by Gutiérrez Garćıa, Kubiak and Picado [2].

References

[1] M. J. Ferreira, J. Picado, The semicontinuous quasi-uniformity of a
frame, Kyungpook Math. J. 46 (2006) 299–306.

[2] J. Gutiérrez Garćıa, T. Kubiak, J. Picado, Localic real functions: a
general setting, Journal of Pure and Applied Algebra 213 (2009) 1064-
1074.

Local metrically generated theories
Anneleen Van Geenhoven
Universiteit Antwerpen
anneleen.vangeenhoven@ua.ac.be
Coauthors: Eva Colebunders, Vrije Universiteit Brussel; Robert Lowen,
Universiteit Antwerpen

A metrically generated theory is a category X which is generated by
its metrizable objects, in the sense that there exists a functor K from
a category C of (generalised) metric spaces to X such that K preserves
initial morphisms and that K(C) is initially dense in the category. Met-
rically generated theories can be isomorphically described as concretely
coreflective subconstructs of some model category. In this context, a
metrically generated category essentially consists of sets structured by
collections of C-metrics which are saturated in some sense. This allows
for a unifying treatment of many theories, like topological spaces, uni-
form spaces, approach spaces, approach uniformities, but also bornolog-
ical or measurable spaces, etc.
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We know that a topology (resp. completely regular topology) can
be derived from a quasi-uniformity (resp. uniformity) by some kind of
‘localisation’, i.e. by way of deriving neighbourhoods from entourages.
In this talk I want to show that, using metrically generated theories, it is
possible to translate this transition into rigorous mathematical results.
Therefore, I will introduce what we call a local metrically generated
theory, and then I will show that every metrically generated theory has
a unique largest local theory which is contained in it.

On (co)normal closure operators

Gonçalo Gutierres
CMUC/University of Coimbra
ggutc@mat.uc.pt
Coauthors: Maria Manuel Clementino

Given a class of groups A ⊆ GRP , the normal closure induced by A
is given, for a subgroup H of G, by

normA
G(H) :=

⋂ {N |H ⊆ N normal subgroup of G, G/N ⊆ B ∈ A}
=

⋂ {ker f |f : G → B ∈ A, f(H) = 0} .

It is easy to see that the normal closure can be defined in any cate-
gory with a 0-object and an M-right factorization, where M contains all
normal monomorphisms.

It is patent that the constructions of the normal and the regular
closure are very similar. Accordingly, we will define the conormal closure
– in parallel with the coregular closure – and, using a unifying setting,
we will generalize results obtained for regular/coregular closures in [CT].

References

[CT] Maria Manuel Clementino and Walter Tholen, Separation versus
connectedness, Topology and its Applications 75 (1995) 143-181.
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‘Distributors at work’ in Topology

Dirk Hofmann
University of Aveiro, Portugal
dirk@ua.pt

“Analogies are useful in mathematics for generalising a class of well-
known examples to a wider class of equally or even more useful struc-
tures. Category Theory is particularly well suited for this purpose which
is no wonder as it has been developed for precisely this purpose” [2]. This
claim is exemplified in [2] by the notion of distributor as “a generalisation
of relations between sets to relations between (small) categories”.

Already F. Hausdorff observed the similarity between the transitivity
law of an ordered set and the triangle inequality of a metric space, and
both can be seen as an instance of the composition law of a category [3].
Thanks to M. Barr [1] we know that topological spaces can be presented
as categories (or ordered sets, if you prefer) as well, by interpreting the
convergence relation x → x between ultrafilters and points of a topolog-
ical space X as arrows in X. In this talk we will built on this analogy
and consequently use concepts and results like

• distributor, adjunction, dual space and the Yoneda lemma

in order to study properties like

• compact ordered, soberness, Cauchy-completeness, injectivity, . . .

simultaneously in (for instance) topological, approach and (probabilistic)
metric spaces. We find it remarkable that all above-mentioned properties
appear as generalisations of one simple concept: existence of suprema in
an ordered set.

Finally, our techniques seem to be particularly well-suited for the
study of domain-theoretic notions in quantitative settings. In partic-
ular, we introduce a concept of a relative continuous V-category and
develop its basic properties. This way we recover many of the well-
known classical structures like continuous domains, completely distribu-
tive complete lattices and Cauchy-complete metric spaces, but there re-
main many more settings where the meaning of continuity is still to be
explored.

The talk is based on joint work with Maria Manuel Clementino, Wal-
ter Tholen and PaweÃl Waszkiewicz. For more informations, please con-
sult http://www.mat.ua.pt/pessoais/dirk.
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Embedding locales of prescribed weight into localic products

Tomasz Kubiak
WydziaÃl Matematyki i Informatyki, Uniwersytet im. Adama Mickiewicza,
Poznań, Poland
tkubiak@amu.edu.pl
Coauthors: Javier Gutierrez Garcia

The localic analogue of the concept of separating points from closed
sets is exhibited and used to provide a localic version of the topological
embedding theorem (also called the diagonal theorem). Our embedding
theorem allows controlling the amount of factors of the target localic
product which depends on the weight of the embeddable locale. With the
product of copies of the localic unit interval, it becomes the Johnstone-
Tychonoff embedding theorem for completely regular locales enriched
with the cardinality ingredient, i.e. stated in terms of a universal locale.

Homotopical properties of weakly globular models of homotopy
types.

Simona Paoli
University of Haifa
paoli@math.haifa.ac.il

Homotopy n-types are an important class of topological spaces: they
amount to CW complexes whose homotopy groups vanish in dimension
higher than n. The problem of modelling homotopy types is relevant
both in higher category theory and homotopy theory and received con-
tributions from both areas. There is a particularly simple model of ho-
motopy types in the path connected case, consisting of n-fold categories
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internal to groups, also called catn-groups. This model, however, has
the disadvantage that is it does not have an algebraic description of the
Postnikov decomposition nor it is easy to establish algebraically when a
map of catn-groups is a weak equivalence. In this talk we introduce a
new model of connected n-types through a subcategory of catn-groups,
which we call weakly globular, for which the above issues are resolved in
transparent way. We also describe other homotopical properties of this
model, and discuss the relevance of these structures for higher category
theory.

Maximal decomposition of the Turaev-Viro HQFT

Jerome Petit
Tokyo Institute of Technology
petit.j.aa@m.titech.ac.jp

In a previous work, I have defined the Turaev-Viro HQFT using a
group associated to a spherical category. This group is called the grad-
uator of the category and defined a graduation on the category. I will
extend the construction of the Turaev-Viro HQFT for every graduation
on a spherical category. Furthermore I will show that the HQFT ob-
tained is induced by the HQFT obtained from the graduator. To obtain
this result I will define an homotopical invariant for every graduation and
I will compare this invariant to the homotopical Turaev-Viro invariant
which is defined for the graduator.

Connectedness, disconnectedness, and light factorization struc-
tures with applications to fuzzy topology

Gerhard Preuß
Institut fr Mathematik, Freie Universitt Berlin
preuss@math.fu-berlin.de

After a short survey on the historical development connectedness, dis-
connectedness, and light factorization structures are studied first in the
framework of topological constructs with hereditary quotients. In this
context internal characterization of connectedness and disconnectedness
classes are available and the full subconstruct of totally disconnected
objects can be seen as a certain reflective hull. Then these results are
applied to the strong topological universe FPUConv of fuzzy preuniform
convergence spaces which has been introduced earlier by the author in
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the realm of non-symmetric fuzzy convenient topology using fuzzy filters
in the sense of P. Eklund and W. Ghler. In this fuzzy setting a prod-
uct theorem for the investigated connectedness concept can be proved
and there is a proper class of light factorization structures on FPUConv.
This is highly remarkable since on the construct FTop of fuzzy topo-
logical spaces which can be embedded into FPUConv there are no light
factorization structures.

Locally presentable topology

Jǐŕı Rosický
Masaryk university
rosicky@math.muni.cz

A well known deficiency of the category of topological spaces is that
it is not cartesian closed. Another and less known drawback is that it is
not locally presentable, which is caused by the existence of a proper class
of ultrafilters giving too many types of convergence. This is the main
reason why, in homotopy theory, simplicial sets substitute topological
spaces. We will show that the final closure of a small full subcategory of
topological spaces is always locally presentable. Thus topological spaces
generated by simplices can play the same role in homotopy theory as sim-
plicial sets. We will also mention benefits of finding a locally presentable
(and cofibrantly generated model) for a given homotopy category.

Initial lax extensions

Wannes Rosiers
University of Antwerp (Belgium)
wannes.rosiers@ua.ac.be
Coauthors: E. Colebunders (Vrije Universiteit Brussel, Belgium) R.
Lowen (University of Antwerp, Belgium)

This talk contributes to the algebraization of topology via the theory
of monads and lax monads and their associated algebras. We construct a
monad P , a full lax extension P ′ and monad morphisms into P from the
most important monads, as there are the identity monad, the ultrafilter
monad and a monad introduced to obtain metric spaces, such that their
lax extensions and their associated categories of lax algebras can be
derived from the unique extension P ′ by initial lifts via these monad
morphisms. This provides us with a completely unified way to obtain
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the categories Top, Ap, Met and Ord without the necessity to leave the
realm of Rel as was previously required. At last, we will describe the
Eilenberg-Moore algebras of these monads as well.

Hausdorff and Gromov ‘distances’ for some topological cate-
gories

Walter Tholen
Department of Mathematics and Satistics, York University, Toronto,
Canada
tholen@mathstat.yorku.ca

The Hausdorff metric for closed subsets of a compact metric space
and the Gromov metric for compact metric spaces lead us to define these
concepts in the context of quantale-enriched categories, as suggested pre-
viously in general terms by F. W. Lawvere who, by interpreting d(x, y)
as hom(x, y), considered individual metric spaces as categories enriched
over the (extended non-negative) real line [3]. We present the Hausdorff
construction as part of a monad H on V-Cat which, when the quantale
V is given by the reals (with addition as tensor product), is just the
topological category of (generalized) metric spaces. Our treatment of
the Gromov distance for V-categories takes advantage of the fact that
H may be extended to a lax functor that may be applied not just to
V-functors (= non-expansive maps in case of the prototypical V) but to
so-called V-modules ( = metric-compatible relations for the particular
V).

This work may largely be found in [1], and we also refer to previous [4]
and subsequent [5] categorical treatments of the Hausdorff metric. Time
permitting we will also discuss current efforts to expand these concepts
and results to (T,V)-Cat, where T is a Set-monad suitably compatible
with V (see [2]), in particular to Top = (beta,2)-Cat, the category of
topological spaces.
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Uniformizable and realcompact bornological universes

Tom Vroegrijk
University of Antwerp
tom.vroegrijk@ua.ac.be

A bornological universe is a topological space endowed with a bornol-
ogy. Each uniform space has a natural underlying bornological universe,
i.e. the underlying topological spaces endowed with the bornology of
sets that are bounded in the sense of Bourbaki. A bornological universe
that can be obtained in this way will be called uniformizable. We want
to answer two questions: 1. what are necessary and sufficient condition
under which a bornological universe is uniformizable and 2. when is such
a uniformizable bornological universe isomorphic to a closed subspace of
a product of real lines?
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Duality Theory in Logic
Guram Bezhanishvili
New Mexico State University, USA
gbezhani@nmsu.edu

I will discuss duality theory and its use in non-classical logics such as
intuitionistic and modal logics. The ideas go back to Stone and Tarski,
and predate the birth of pointfree topology. As we will see, some of the
questions that come from logic shed a new light on the known categories
of topological spaces, as well as provide a new source of problems in
topology, some of which still remain open.

Arcs and Curves in Z2

Ezzeddine Bouassida
B.P. 86 Sidi Abbes 3062 Sfax (Tunisia)
ezzeddine bouassida@yahoo.fr

We prove a Jordan Curve Theorem in Z2 equipped with the Khal-
imsky Topology. This proof is different from the O. Kisselmann’s one
(Digital Jordan Curve Theorems, Lecture Notes in Computer Science,
Springer, Berlin , vol. 1953, (2000) and the J.Slapal’s one (Digital Jor-
dan Curves, Topology and Applications. 153 (2006), 3255–3264.). We
use essentially the specific properties of Alexandroff spaces:

• (X,T ) is an A-space if and only if there exists a binary relation R
such that T is the R-right-topology.

• The connectivity in an A-space is equivalent to the COTS-Arc-
connectivity.

• If X and Y are two A-spaces and f a function from X to Y , f is a
continuous function if and only if it’s an increasing function, X and
Y are equipped with the the orders determined by the topologies
in X and Y .
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Arcs and curves are defined as in the plane R2. This result is published
in AGT vol. 9,2 (2008), pp: 253-262.

Partial Metrics and Fuzzy Equalities

Michael Bukatin
MetaCarta, Inc., Cambridge, Massachusetts, USA
bukatin@cs.brandeis.edu
Coauthors: R.Kopperman, S.Matthews, and H.Pajoohesh

Partial metrics arise in the context of programming language se-
mantics and generalized metrization of non-Hausdorff topologies. Fuzzy
equalities arise in the context of sheaves and fuzzy sets. It turns out that
partial metrics and fuzzy equalities coincide.

More specifically, the axioms for partial metrics with values in quan-
tales coincide modulo notation with the axioms given by U.Hoehle for
Q-sets (M -valued sets, sets with fuzzy equality, quantale-valued sets) for
the case of commutative quantales.

Omega-sets (sets valued in complete Heyting algebras) correspond to
the case of partial ultrametrics.

On some closure operations on the product spaces of the Khal-
imsky line

Anna Frolova
Alatyr, Russian Federation
lisna-af@yandex.ru

The Khalimsky topology is known for its utility for representing ge-
ometric and topological properties of the digital images in the computer
science-motivated topology. In this work we investigate some relation-
ships between three certain (not necessarily topological) closure opera-
tions defined on a product or a function space of the Khalimsky line. We
consider a certain class of subspaces of such function spaces and prod-
ucts, for which we characterize several low separation axioms and several
covering properties (including compactness) in terms of the studied clo-
sure operations.
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Digital fundamental group of a digital product

Sang-Eon Han
Chonbuk National University
sehan@chonbuk.ac.kr

In this talk we propose a condition of which the multiplicative prop-
erty of the digital fundamental group holds. Precisely, using the LHS-
or LHC-property of the digital product with k-adjacency (X1×X2, k), a
k-homotopic thinning of the digital product, and various properties from
digital covering and digital homotopy theories, we provide a method of
calculating the k-fundamental group of the digital product.

On B-completeness and quietness of quasi-uniform spaces.

Charly Makitu Kivuvu
University of Cape Town, Department of Mathematics and Applied Math-
ematics, Rondebosch 7701, Cape Town, South Africa.
charly makitu@yahoo.fr

In our previous work we have successfully extended the Doitchinov com-
pletion theory of balanced quasi-metric to arbitrary T0-quasi-metric spa-
ces. The resulting completion was called the B-completion.
In this talk we try to extend Doitchinov’s completion theory of quiet
quasi-uniform space to general T0-quasi-uniform spaces. We only par-
tially successful because investigation due to Deák indicates that no suit-
able concept of a quiet Cauchy filter pair exist which could replace the
quasi-metric concept of balanced Cauchy filter pair in the quasi-uniform
settings.
We shall work with a chosen family of quasi-pseudometric in order to
obtain a general theory of the B-completion of subbasic families of quasi-
pseudometrics that can be applied to the study of quasi-uniform spaces.
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Finite approximation of spaces

Ralph Kopperman
Mathematics Department, City College of New York, 137 St. and Con-
vent Av., New York, NY 10031, USA
rdkcc@ccny.cuny.edu
Coauthors: Richard G. Wilson

There is a need to store and manipulate topological spaces in com-
puters with finite memories. It has long been known that each compact
Hausdorff space is the subspace of closed points of an inverse limit of a
system of finite T0-spaces and continuous maps.

For such an approximation, properties of the inverse limit are closely
linked to properties of the maps. For example, a map is called ”normal-
izing” if inverse images of disjoint closed sets are always contained in
disjoint open sets; it is ”hereditarily normalizing” if its restriction to all
subspaces is normalizing. The inverse limit of a system of T0 -spaces and
continuous maps is then (hereditarily) normal if and only if, the system
is eventually (hereditarily) normalizing.

We also discuss the extension of maps between spaces to the inverse
limits of these systems. Most of this is joint work with Richard Wilson,
and some is joint work with V. V. Tkachuk.

The Topology of Causal Sites

Martin M. Kovár
Department of Mathematics
Faculty of Electrical Engineering and Communication
Brno University of Technology
kovar@feec.vutbr.cz

The notion of causality stands in the background of many modern
physical theories and subdisciplines, like general relativity and quantum
gravity, but it also has some importance for temporal logic, distributed
computations and concurrent systems in computer science. A causal
site, introduced by J. D. Christensen and L. Crane [1], is a modification
of the concept of causal set, defined formerly by R. Sorkin et al. [6].
Recall that a causal site (S,v,≺) is a set S of regions equipped with two
binary relations v, ≺, where (S,v) is a partial order having the binary
suprema t and the least element ⊥ ∈ S, and (S r {⊥},≺) is a strict
partial order (i.e. antireflexive and transitive), linked together by the
following axioms, which are satisfied for all regions a, b, c ∈ S:

(i) a v b and a ≺ c implies b ≺ c,
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(ii) b v a and c ≺ a implies c ≺ b,

(iii) a ≺ c and b ≺ c implies a t b ≺ c.

(iv) There exits ba ∈ S, called cutting of a by b, such that

(a) ba ≺ a and ba v b;

(b) if c ∈ S, c ≺ a and c v b then c v ba.

We study some topological properties of causal sites by a topological
reformulation of certain fundamental concepts of formal concept analysis
(FCA) of B. Ganter and R. Wille [3]. For instance, it turns out that
there is a canonical compact T1 (not necessarily Hausdorff) topological
space closely linked to a causal site. On the other hand, some physical
motivated structures, even so simple as the Minkowski space, admits of
more than one compatible causality sites, potentially leading to different
topologies. Thus it is a natural question whether it is possible to select
an appropriate causal site, generating the usual topology on the studied,
physical motivated structure.
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The scale of a quasi-uniform space

Hans-Peter A. Künzi
Dept. Math. Appl. Math., University of Cape Town, Rondebosch 7701,
South Africa
hans-peter.kunzi@uct.ac.za
Coauthors: Olivier Olela Otafudu

We discuss a method to define the concept of a scale of a quasi-
uniform space and investigate some of its basic properties.

The scale of a uniform space was introduced by Bushaw [1] in order
to investigate stability in topological dynamics. It was further studied
by Kent [2] and many others (see e.g. [3,4]).
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Discrete Partial Mathematics

Steve Matthews
Department of Computer Science, University of Warwick
Steve.Matthews@warwick.ac.uk

Our goal is to inherently incorporate complexity theory into the form
of partial mathematics that is now the mature state of research into par-
tial metric spaces. This is to be achieved by first retracing the inspira-
tional work of Dana Scott in order to define a partial metric counterpart
for his P (ω) model of the untyped lambda-calculus. From here an in-
herently quantitative (as in partial metric) formulation of denotational
semantics is developed specifically to model the non strict functional
programming language Haskell. Discrete denotational semantics is now
defined to be a restriction of quantitative denotational semantics that
enables each partial metric distance to be interpretable as a counter.
And so, a denotation of complexity theory is introduced for each and
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every Haskell program, yielding a substantive first case study in Dis-
crete Partial Mathematics. Our research is then to be compared with
the alternative approach of Efficiency-Oriented Languages advocated by
Michel Schellekens.

Computational Complexity of Topological Logics

Ian Pratt-Hartmann
University of Manchester
ipratt@cs.man.ac.uk
Coauthors: Roman Kontchakov and Michael Zakharyaschev

Let T be a topological space. By “topological frame over T”, we mean
a non-empty collection of subsets of T . Now let L be a formal language
whose variables are taken to range over the elements of some topological
frame, and whose predicates and function symbols have (fixed) interpre-
tations as familiar topological relations and operations. Thus, if F is a
topological frame, we may non-problematically speak of the satisfaction
of any L-formula by a tuple of elements of F . Derivatively, if K is a class
of topological frames (not necessarily over the same topological space)
we may speak of the satisfiability of an L-formula with respect to K. We
call the pair (L,K) a “topological logic”. The primary question arising
in connection with any topological logic is: how do we recognize its sat-
isfiable formulas? From an algorithmic point of view, we are particularly
concerned with the decidability and complexity of these problems.

This talk presents a survey of recent advances in the complexity-
theoretic analysis of topological logics. Of particular interest are the
cases in which the class K consists of a single frame over some low-
dimensional Euclidean space. We shall discuss what is known in these
cases, and conclude with some challenging open problems.
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A duality for bounded lattices with modal operators
Ingrid Rewitzky
University of Stellenbosch
rewitzky@sun.ac.za

We aim to present a duality for bounded (not necessarily distributive)
lattices with modal operators of possibility, necessity, sufficiency or dual
sufficiency. The key elements are a generalisation of Goldblatt’s duality
for distributive lattices with meet- and join-preserving operators, and a
simultaneous extension of Urquhart’s duality for bounded lattices. We
aim to achieve this by topologising the discrete dualities for bounded
lattices with operators presented by Orlowska and Vakarelov.
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On the Wallman ordered compactification and the T1-ordered
property
Tom Richmond
Western Kentucky University
tom.richmond@wku.edu
Coauthors: Hans-Peter Künzi (University of Cape Town), Aisling Mc-
Cluskey (National University of Ireland Galway)

With the standard definitions and constructions, the Wallman or-
dered compactification of a T1-ordered topological space is T1 but not
necessarily T1-ordered. We present a new form of the T1-ordered prop-
erty called the TK

1 -ordered property. We show that the Wallman ordered
compactification of a TK

1 -ordered topological space is TK
1 -ordered and

present other compelling reasons to suggest that the TK
1 -ordered prop-

erty is a more appropriate ordered analog of the T1 topological property.
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Hyperspaces of a Weightable Quasi-metric Space

Jesús Rodŕıguez-López
Universidad Politécnica de Valencia
jrlopez@mat.upv.es
Coauthors: Hans-Peter A. Künzi and Salvador Romaguera

It is well known that both weightable quasi-metrics and the Hausdorff
distance provide efficient tools in several areas of Computer Science. This
fact suggests, in a natural way, the problem of when the upper and the
lower Hausdorff quasi-pseudo-metrics of a weightable quasi-metric space
(X, d) are weightable. Here we discuss this problem. Although the
answer is negative in general, we show, however, that it is positive for
several nice classes of (nonempty) subsets of X. Since the construction of
these classes depends, to a large degree, on the specialization order of the
quasi-metric d, we are able to apply our results to some distinguished
quasi-metric models that appear in theoretical computer science and
information theory, like the domain of words, the interval domain and
the complexity space.

Convenient Alexandroff pretopologies on the digital plane

Josef Šlapal
Brno University of Technology
slapal@fme.vutbr.cz

We discuss several Alexandroff pretopologies on Z2 with respect to
which some cycles in a certain natural graph with the vertex set Z2 are
Jordan curves. We deal also with a closure operator on Z2 that is not a
pretopology but has the same property.
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A Family of Asymmetric Ellis-Type Theorems

Susanne Andima
Long Island University - C.W. Post Campus
SAndima@liu.edu
Coauthors: R. Kopperman, P. Nickolas, and S. Popvassilev

Bouziad in 1996 generalized theorems of Montgomery (1936) and
Ellis (1957), by proving that each Čech-complete space with a separately
continuous group operation must be a topological group. We generalize
this result by dropping the requirement that the spaces be Hausdorff
or even T1. Our theorems then apply to groups with “asymmetric”
topologies, such as the additive group of reals with the upper topology,
whose open sets are the open upper rays. We use the fact that each
topological space has an associated second topology, which we call the “k-
dual”, and we consider cases where the bitopological space consisting of
the original topology and its k-dual is a “Hausdorff k-bispace”, the latter
being a bitopological parallel to the topological concept of a Hausdorff
k-space, but in which neither topology need be Hausdorff. Suppose a
group has a topology in which the group multiplication is separately
continuous. Assume also that the bitopological space described above is
a Hausdorff k-bitopological space. One of our results is that if the join of
the two topologies is Čech-complete, then inversion is a homeomorphism
between the original space and its k-dual, and the group operation is
jointly continuous with respect to both topologies. The same conclusion
holds more generally if the join is assumed to be a Baire p-space, p-σ-
fragmentable by a complete sequence of covers.
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On the variety of Schwartz groups

Lydia Aussenhofer
Departamento de Matematicas, UJI, Castellon
aussenho@uji.es

Schwartz groups have been defined to be those abelian Hausdorff
groups which satisfy:

∀U ∈ U(0) ∃V ∈ U(0),∃(Fn), a sequence of finite subsets of G : V ⊆
1/nU + Fn ∀n ∈ N.

We treat the question whether the variety of all Schwartz groups
coincides with the variety generated by all locally–kω groups.

Image Partition Regularity Near Zero and Universally

Dibyendu De
Krishnagar Women’s College, krishnagar, Nadia-741101, India
dibyendude@gmail.com
Coauthors: Neil Hindman

Many of the classical results of Ramsey Theory for example Schur’s
Theorem, van der Waerden’s Theorem, Finite sums Theorem, are nat-
urally stated in terms of image partition regularity of matrices. Many
characterizations are known of image partition regularity over N and
other subsemigroups of (R, +). In this presentation first we introduce
the notion image partition regularity near zero and image partition regu-
larity near zero in the strong sense for different dense subsemigroups of
R and investigate the interrelations between them. Being motivated by
the definition of image partition regularity near zero we also introduce
another notion universally image partition regularity. We shall prove
that for finite matrices all the notions are equivalent, but in the infinite
matrices there are lots of variety. Finally we prove that universally image
partition regular matrices exist in abundance. To this end the author
should mention that some portion of this presentation is a joint research
work with Prof. Neil Hindman.
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Measurable functions as an epireflection

Roman Frič
Mathematical Institute of the Slovak Academy of Sciences and Catholic
University in Ružomberok
fricova@netkosice.sk

Let A be a σ-field of subsets of X. Denote M(A) the set of all
measurable functions of X into [0, 1]. The set M(A) carries several
canonical structures: pointwise partial order, pointwise sequential con-
vergence and various pointwise (partial) algebraic operations generated
by the corresponding algebraic operations on [0, 1]. If we identify each
set A ∈ A and its characteristic function χA, then A and M(A) become
distinguished systems of fuzzy subsets of X: A is a domain of classical
probability and M(A) is a domain of fuzzy probability. We study their
topological properties and their mutual relationship from the viewpoint
of category theory. We show that A and M(A) have properties analo-
gous to compactness and the embedding of A into M(A) can be viewed
as an epireflection having interesting probabilistic aspects.

Compact-like topological groups with small compact subsets

Jorge Galindo
Castelln, Jaume I University
jgalindo@mat.uji.es
Coauthors: S. Macario, L. Recoder, M. G. Tkachenko

It has long been known that some precompact topological groups
admit no infinite compact subsets. Reporting on recent joint results with
S. Macario and with L. Recoder and M.G. Tkachenko we will describe
examples of pseudocompact groups with no infinite compact subsets and
of ω-bounded groups whose compact subsets are all metrizable. We will
explore as well the applications of these results in the dulaity theory
of topological groups, such as the existence of Pontryagin reflexive P -
groups and of Pontryagin reflexive ω-bounded groups.
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Small quasi-convex sets in locally compact abelian groups
Gabor Lukacs
University of Manitoba
lukacs@cc.umanitoba.ca
Coauthors: D. Dikranjan

For an abelian topological group G, we denote by Ĝ the Pontryagin
dual of G, that is, the group of all characters of G endowed with the
compact-open topology. For E ⊆ G and A ⊆ Ĝ, the polars of E and A
are defined as E. = {χ ∈ Ĝ | χ(E) ⊆ T+} and A/ = {x ∈ G | ∀χ ∈
A,χ(x) ∈ T+}. The set E is said to be quasi-convex if E = E./.

Unlike the “geometrically” transparent property of convexity, quasi-
convexity remains an admittedly mysterious property. Although locally
quasi-convex groups have been studied by many authors (cf. [1], [2]
and [3]), their work did not completely reveal the nature of the small
quasi-convex sets. Interest in the compact quasi-convex sets stems from
the theory of Mackey groups (cf. [4] and [8]).

A sequence {xn}∞n=0 ⊆ G is quasi-convex if S = {0} ∪ {±xn | n ∈ N}
is quasi-convex in G. We say that {xn}∞n=0 is non-trivial if the set S is
infinite, and it is a null sequence if xn −→ 0. Lydia Aussenhofer asked
for a characterization of compact abelian groups that admit a non-trivial
quasi-convex null sequence. In this talk, we provide such a characteri-
zation for the larger class of locally compact abelian groups. Concrete
examples of non-trivial quasi-convex null sequences in the groups R,
R/Z, and Zp (the p-adic integers) will also be presented.

References

[1]L. Aussenhofer. Contributions to the duality theory of abelian topo-
logical groups and to the theory of nuclear groups. Dissertationes Math.
(Rozprawy Mat.), 384:113, 1999.
[2]W. Banaszczyk. Additive subgroups of topological vector spaces, vol-
ume 1466 of Lecture Notes in Mathematics. Springer-Verlag, Berlin,
1991.
[3]M. Bruguera. Grupos topológicos y grupos de convergencia: estudio
de la dualidad de Pontryagin. PhD thesis, Universidad Complutense de
Mardid, 1999.
[4]M. J. Chasco, E. Mart́ın-Peinador, and V. Tarieladze. On Mackey
topology for groups. Studia Math., 132(3):257–284, 1999.
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The Følner function for Thompson’s group F

Justin Tatch Moore
Cornell University
justin@math.cornell.edu

If G is a finitely generated amenable group, then we can define a
function f(n) to be the minimum cardinality of a 1/n-Følner set in G.
This function is the Følner function for G (its asymptotics do not depend
on the choice of generating set). Gromov asked whether there are finitely
presented amenable groups whose Følner function grows faster than ev-
ery primitive recursive function. I will examine the case of Thompson’s
group F , demonstrating a lower bound for its Følner function in terms
of the tower function.

Archimedean atomic Lattice effect algebras with Hausdorf in-
terval topology

Jan Paseka
Masaryk University, Brno, Czech Republic
paseka@math.muni.cz
Coauthors: Zdenka Riečanová and Wu Junde

It is well known that a Boolean algebra B is atomic iff the inter-
val topology τ(i) on B is Hausdorff (Katětov, Sarymsakov at all). This
statements no longer holds for generalizations of Boolean algebras as
orhomodular lattices and MV-algebras. There is a complete atomic
orthomodular lattice which τ(i) is not Hausdorff (Sarymsakov at all)
and an MV-algebra M which τ(i) is Hausdorff, but M is not atomic (
M = [0, 1] ⊆ R).

We study a common generalization of orthomodular lattices and MV-
algebras, called lattice effect algebras. Namely we study a family A
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of Archimedean atomic lattice effect algebras with Hausdorff interval
topology. We prove that every lattice effect algebra E in A is almost
orthogonal, meaning that to every atom of E there exist only finitely
many nonorthogonal atoms. Further, for Archimedean atomic lattice
effect algebra E we show that: E is in A iff E is an order-continuous
lattice iff E is compactly generated by finite elements.

Moreover, for Archimedean atomic lattice effect algebra E with finite-
ly many bloks (maximal sub-MV-effect algebras) we can show that: E
is almost orthogonal iff the MacNeille completion MC(E) of E is com-
pactly generated. We applied these results on the extension of any (o)-
continuous state existing on sharp elements (or on finite and cofinite
elements ) of E onto whole E, and onto MC(E) as well.
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Hewitt-Marczewski-Pondiczery type theorem for abelian
groups and Markov’s potential density

Dmitri Shakhmatov
Ehime University
dmitri@dpc.ehime-u.ac.jp
Coauthors: Dikran Dikranjan

The classical result of Hewitt-Marczewski-Pondiczery states: If τ is
an infinite cardinal, I is a set such that |I| ≤ 2τ , and for every i ∈
I a space Xi has a dense subset of size ≤ τ , then the product X =∏

i∈I Xi also has a dense subset of size ≤ τ . We investigate the following
“algebraic version” of this theorem. Let κ be an infinite cardinal and
T = R/Z be the circle group. Given a fixed subset S of an abelian group
G, we attempt to find a group homomorphism π : G → Tκ such that
π(S) becomes dense in Tκ. Of particular interest is the special case when
π can be chosen to be a monomorphism, that is, when the group G and
the subgroup π(G) of Tκ become isomorphic. Our choice of the target
group is justified by the fact that every abelian group G is isomorphic
to a subgroup of Tκ for a suitable κ. To ensure a closer resemblance of
the Hewitt-Marczewski-Pondiczery theorem, we pay special attention to
the case κ = 2τ for some infinite τ by addressing the following question:
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Given a subset S of an abelian group G such that |S| ≥ τ and |G| ≤ 22τ

,
does there exist a monomorphism π : G → T2τ

such that π(S) becomes
dense in T2τ

?
The origin of this setting can be traced back to the 1916 paper of

Weyl [4]. We recall the classical Weyl’s uniform distribution theorem:
Given a faithfully indexed subset S = {an : n ∈ N} of the integers
Z, the set of all α ∈ T such that the set Sα = {anα : n ∈ N} ⊆ T
is uniformly distributed has full measure 1. Since uniform distribution
implies density in T, it follows that Sα is dense in T for almost all α ∈ T.
Every α ∈ T determines uniquely a homomorphism hα : Z → T such
that hα(1) = α. Furthermore, α ∈ T generates a dense subgroup of T iff
α is non-torsion iff the homomorphism hα is a monomorphism. Hence,
one can state (a consequence of) Weyl’s theorem by simply saying that
for every infinite subset S of Z there exists a monomorphism π : Z→ T
such that π(S) is dense in T. Tkachenko and Yaschenko [3] consider
homomorphisms π : G → Tω such that π(S) is dense in Tω, for a certain
class of groups G. They use such homomorphisms as a technical tool in
addressing the problem suggested first in 1946 by Markov.

According to Markov [2], a subset S of a group G is called potentially
dense (in G) provided that G admits some Hausdorff group topology
T such that S is dense in (G, T ). The last section of [2] is exclusively
dedicated to the following problem: Which subsets of a group G are
potentially dense in G? Markov proved that every infinite subset of Z
is potentially dense in Z. This was strengthened in by Dikranjan and
Tkachenko [1] who showed that every infinite subset of Z is dense in
some precompact metric group topology on Z. (Apparently, the authors
of [2] and [1] were unaware that both these results easily follow from
Weyl’s uniform distribution theorem.) Further progress was obtained by
Tkachenko and Yaschenko [3] who proved the following theorem: If an
abelian group G of size at most continuum is either almost torsion-free
or has exponent p for some prime p, then every infinite subset of G is
potentially dense in G. (According to Tkachenko and Yaschenko [3], a n
abelian group G is almost torsion-free if rp(G) is finite for every prime p.)
The authors have obtained a complete characterization of the countable
potentially dense subsets of abelian groups: A countable subset S of an
abelian group G is potentially dense in G if and only if |G| ≤ 2c and S
is Zariski dense in G. (Here c denotes the cardinality of the continuum.)
We also investigate the remaining case of uncountable subsets S. In
particular, we obtain a new sufficient condition that guarantees that a
subset S of an abelian group G is potentially dense in G. Moreover, when
this condition is satisfied, we prove that the topology T on G such that
S is T -dense in G can be chosen to be precompact. When G belongs
to a wide class of abelian groups (for example, almost torsion-free or
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divisible groups) and S is uncountable, our sufficient condition turns
out to be also necessary for potential density. At last but not least, our
sufficient condition is rather powerful in the countable case as well: the
only case that is not covered by our condition is when nS for a suitable
non-zero integer n is contained in a finitely generated subgroup of G.
It is therefore only this special case that still requires the substantially
more sophisticated techniques (developed by the authors earlier) to prove
potential density (in some precompact group topology).
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Weakening the topology of a Lie group by forcing a sequence
to converge to zero

T. Christine Stevens
Saint Louis University, St. Louis, Missouri USA
stevensc@slu.edu
Coauthors: Jon W. Short (Sam Houston State University)

A weakened Lie group is a Lie group endowed with a Hausdorff group
topology τ that is weaker than the Lie topology. Such topologies arise in
the study of Lie groups of transformations. If the Lie group is connected,
then all possible topologies τ are completely determined by their restric-
tion to a particular abelian subgroup, and thus the problem reduces to
investigating the ways in which the topology of an abelian Lie group
can be weakened while remaining Hausdorff. In the present paper, we
consider metrizable topologies for Rn that are defined by specifying a
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sequence of elements of Rn and the rate at which it converges to zero,
and we explore the effect of changing the converging sequence and/or
the ”rate sequence.” We prove, for example, that the resulting topolo-
gies are all locally isometric, provided the rate sequence is the same, and
their completions are locally isometric, as well. Since the local isome-
try is not, in general, a local homomorphism, the completions can have
different global properties.
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Topology in Geometry

Minimal Peano Curve

Konstantin Bauman
Steklov Institute of Mathematics, Russian Academy of Science, Gubkina
8, Moscow, 119991 Russia
kostuan@mail.ru
Coauthors: E.V.Shchepin (Steklov Institute of Mathematics)

A Peano curve p(x) with maximum square-to-linear ratio equal to
52

3 is constructed; this ratio is smaller than that of the classical Peano–
Hilbert curve, whose maximum square-to-linear ratio is 6. It is proved
that this curve is a unique (up to isometry) regular diagonal Peano curve
of fractal genus 9 whose maximum square-to-linear ratio is less than 6. A
theory is developed that allows one to find the maximum square-to-linear
ratio of a regular Peano curve on the basis of computer calculations.

The torsion of almost product and almost complex projective
geometries

Jaroslav Hrdina
Brno University of Technology
hrdina@fme.vutbr.cz

We discuss almost product projective geometry and almost complex
projective geometry with respect to cohomological interpretation of the
curvature. The appropriate cohomology is computed by the Künneth
formula from the classical Kostant’s formulae. Our approach is based on
an observation that well known general techniques apply, and our goal
is to illustrate the power of the general parabolic geometry theory on
quite explicit examples.
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Characteristic classes of smooth fibrations

Jarek Kedra
University of Aberdeen, University of Szczecin
kedra@maths.abdn.ac.uk

I will define various characteristic classes of smooth fibrations and
show how to calculate some of them.

The problem of a connectedness of groups of Weil algebra au-
tomorphisms and some consequences in geometry

Miroslav Kureš
Brno University of Technology
kures@fme.vutbr.cz

Weil algebras are real local finite-dimensional commutative unital al-
gebras. We present that both connectedness and disconnectedness can
occur for groups of automorphisms of Weil algebras in usual Euclidean
topology and compare with e.g. Zariski topology and also with some
results about special cases which are first of all jet groups. We show
effects of connectedness / disconnectedness for a characterization of a
fixed point subalgebra and, consequently, for natural geometric opera-
tions on Weil bundles, which represent a generalization of higher order
velocities bundles.

Comments on Parabolic Geometries

Jan Slovák
Masaryk University
slovak@math.muni.cz

I shall provide a brief review of the nice class of geometric structures
called Parabolic Geometries. Special attention will be devoted to some
topological aspects of the homogeneous models. The talk will be of
survey character.
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Indices of quaternionic complexes

Oldřich Spáčil
Masaryk University, Brno
151393@mail.muni.cz

I will present a procedure how to compute analytical indices of a class
of elliptic complexes on quaternionic manifolds. These complexes arise as
subcomplexes of the so-called curved BGG-sequences in the framework
of parabolic geometries.

Symmetries on parabolic geometries

Lenka Zalabová
Masaryk University, Brno
zalabova@math.muni.cz

We study parabolic geometries which can carry some symmetry at a
point. We show some examples and discuss existence of symmetries in
dependence on the Lie groups which define the geometry.
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Topology in Functional
Analysis

Continuous duality for topological groups

Ronald Beattie
Mount Allison University
rbeattie@mta.ca
Coauthors: H.-P. Butzmann

For Pontryagin’s group duality, in the setting of locally compact topo-
logical Abelian groups, the topology on the character group was the
compact-open topology. There exist, at present, two extensions of this
theory to topological groups which are not necessarily locally compact.
The first, called the Pontryagin dual, continues to use the compact-open
topology. The second, the continuous dual, uses the continuous conver-
gence structure. Both coincide on locally compact topological groups
but differ dramatically otherwise. The Pontryagin dual is a topolog-
ical group while the continuous dual is not. On the other hand, the
continuous dual is a left adjoint and enjoys many categorical properties
which fail for the Pontryagin dual. These two duals are examined and
compared.

Topological groupoids with locally compact fibres

Madalina Roxana Buneci
University Constantin Brancusi of Targu-Jiu
ada@utgjiu.ro

For developing an algebraic theory of functions on a topological
groupoid (more precisely to define convolution that gives the algebra
structure on a function space associated with G), one needs an analogue
of Haar measure on locally compact groups. This analogue is a sys-
tem of measures, called Haar system, subject to suitable invariance and
smoothness conditions called respectively ”left invariance” and ”continu-
ity”. By analogy with the group case, it is usual to endow the groupoid
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with a locally compact topology. But unlike the case of locally compact
group, Haar system on groupoid need not exists. If G is a locally com-
pact groupoid and R is the principal groupoid associated to G, then R
can be endowed with various topologies. But these topologies are not
necessarily locally compact. Therefore if the groupoid does not satisfy
further hypotheses, R can not be endowed with a Haar system. The
purpose of this paper is to introduce a topology on G (not necessarily
locally compact) such that the fibres of G are locally compact Hausdorff
subspaces and to prove that we can endow R with a similar topology.
We shall modify the choice of Cc(G) (the space of of complex valued con-
tinuous functions with compact support on G) and continuity condition
required for a Haar system, and we shall prove that any Haar system on
G can be used to construct a Haar system on R, and conversely.

Duality methods in topological abelian groups

Salvador Hernández
Universitat Jaume I
hernande@mat.uji.es
Coauthors: Joint research with Maŕıa V. Ferrer. A part of this talk also
concerns several research projects accomplished with different authors:
C. Chis, S. Macario, J. Trigos-Arrieta, and B. Tsaban

We report on some results around the duality theory of topological
abelian groups. In particular, the properties of determined groups and
the application of duality methods in the computation of some topolog-
ical invariant cardinals will be mainly discussed.

Frames of multipliers in tensor products of Hilbert C*-modules

Maria Joita
University of Bucharest
mjoita@fmi.unibuc.ro

Hilbert C∗–modules are generalizations of Hilbert spaces by allowing
the inner product to take values in a C∗–algebra rather than in the
field of complex numbers. The notion of frames in Hilbert spaces was
introduced by R. J. Duffin and A. C. Schaeffer [Trans. Amer. Math. Soc.
72(1952)] in the context of non-harmonic Fourier series. M. Frank and D.
Larson [Contemp. Math. 247(1999) and J. Operator Theory 48(2002)]
generalized this notion to the situation of Hilbert C∗–modules and later
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I. Raeburn and S.J. Thompson [Proc. Amer. Math. Soc. 131(2003)]
introduced the notion of frames of multipliers. A multiplier of a Hilbert
A-module E is an adjointable module morphism from A to E. The set
M(E) of all multipliers of E has a structure of Hilbert C∗-module over
the multiplier algebra of A and contains E as Hilbert C∗–submodule.
A standard frame of multipliers for a Hilbert A-module E is a sequence
hnn of multipliers of E such that Σn 〈ξ, hn〉M(E) 〈hn, ξ〉M(E) converges
in A for each ξ ∈ E and there are constants C, D > 0 with the property
that

C 〈ξ, ξ〉 ≤ Σn 〈ξ, hn〉M(E) 〈hn, ξ〉M(E) ≤ D 〈ξ, ξ〉
for each ξ ∈ E.

Given a standard frame of multipliers hnn in a Hilbert A-module
E and a standard frame of multipliers tnn in a Hilbert B-module F we
construct a standard frame of multipliers for the external tensor product
of E and F and for the inner tensor product of E and F using a C∗–
module morphism Φ from A to the C∗-algebra of all adjointable module
morphisms on F .

Hereditary covering properties of weak∗-topologies

Heikki Junnila
University of Helsinki
heikki.junnila@helsinki.fi

We characterize, in a uniform way, certain properties of a Banach
space in terms of hereditary covering properties of the weak∗-topology
of the dual space. Among properties characterized in this way are weak
countable determinedness, weak K-analycity and the existence of an
equivalent uniformly Gâteaux smooth norm.
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Three-space property for analytic metrizable locally convex
spaces
Jerzy Kakol
Faculty of Mathematics and Informatics, A. Mickiewicz Universty, Poz-
nan, Poland
kakol@amu.edu.pl
Coauthors: M. Lopez-Pellicer, W. Sliwa

By a three-space property (for topological vector spaces) we under-
stand the following: Suppose that E is a tvs and F is a closed vector
subspace such that F and the quotient E/F have certain property P.
Does E have property P? Corson used the concept of weakly compactly
generated Banach spaces to show that the Lindelöf property is not a
three-space property. Corson’s example shows also that K-analyticity is
not a three-space property but it does not cover the problem for P =
analytic. The main result states the following

Theorem (1) Let E be a metrizable topological vector space con-
taining a closed subspace F such that F and E/F are analytic. If F is
complete and locally convex, then E is analytic. (2) There is a separa-
ble normed space E which is not analytic but contains a closed analytic
subspace F such that E/F is a separable Banach space.

The argument used in part (2) applies to provide a large class of
weakly analytic metrizable and separable Baire tvs not analytic (clearly
such spaces are not locally convex!).

Envelopes of open sets related to extending holomorphic func-
tions
Ondřej Kalenda
Charles University in Prague
kalenda@karlin.mff.cuni.cz
Coauthors: Domingo Garćıa, Manuel Maestre

Let U be an open subset of a dual Banach space. A subset of U
is called U-bounded if it is bounded and has positive distance to the
complement of U. The tilde-envelope of U is the union of weak* closures
of all U-bounded sets. This kind of envelope is related to extending
holomorphic functions. We study this envelope and its iteration, we
present a number examples and establish a connection to iterated weak*
sequential closures.
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Trees and finitely fibered compacta

Wieslaw Kubis
Czech Academy of Sciences
kubis@math.cas.cz
Coauthors: Anibal Molto

A compact space K is called n-fibered (finitely fibered) if it has a
continuous map f : K → X onto a metric space, such that the fibers of
f are at most n-element (finite) sets.

Every tree T is naturally a locally compact topological space. We
show that its one-point compactification is 2-fibered if and only if T is
R-embeddable and |T | ≤ 2ℵ0. We shall also discuss which trees have
compactifications representable as subsets of Baire class one functions
over a Polish space (i.e. Rosenthal compacta). As an application, we
give an example of a Rosenthal compact K which is not a continuous
image of any first countable Rosenthal compact and its Banach space of
continuous functions has some negative renorming properties.

On linear continuous open surjections of the spaces Cp(X)
Arkady Leiderman
Ben Gurion University of the Negev (Israel)
arkady@math.bgu.ac.il
Coauthors: Michael Levin

Let I = [0, 1] be the closed unit segment, and X be the one-point
compacticitaion of the disjoint union of the n-dimensional cubes In for all
natural numbers n. We show that there exists a linear continuous open
surjection from Cp(I) onto Cp(X). Open questions will be duscussed.

Compactness of generalized Helly spaces.

Marianne Morillon
University of La Reunion
Marianne.Morillon@univ-reunion.fr

Given a linearly ordered set X, the subset H(X, [0, 1]) of [0, 1]X con-
sisting of the non-decreasing mappings u : X → [0, 1] is Loeb-compact
in set-theory without the Axiom of Choice ZF . Moreover, if the linear
order X is complete, the dual ball of the Banach space C(X) endowed
with the weak* topology is Loeb-compact, and the space C(X) satisfies
the effective continuous Hahn-Banach property.
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Topological Properties of Cone Metric Space
Hamid Mazaheri
Yazd University
hmazaheri@yazduni.ac.ir

The purpose of this paper is to introduce Cone metric space and
discuss about topological properties of Cone metric space. In this note,
we shall consider the relation between induced topology by Cone metric
space and induced topology by metric space and obtain some results on
them.

Some remarks about K-analyticity of groups of continuous ho-
momorphisms
Santiago Moll
Technical University of Valencia (Spain)
sanmollp@mat.upv.es
Coauthors: Jerzy Kakol, Elena Mart́ın-Peinador

For an Abelian locally compact group X let X∧
p be the group of

continuous homomorphisms from X into the unit circle T of the complex
plane endowed with the pointwise topology. It is proved that the group
X is metrizable if and only if X∧

p is a K-analytic space if and only if X
endowed with its Bohr topology σ(X,X∧) has countable tightness. This
enables us to establish a large class of topological groups with countable
tightness which cannot be sequential, so neither Fréchet-Urysohn.

Gul’ko, descriptive, and Gruenhage compact spaces
Vicente Montesinos
Instituto de Matemática Pura y Aplicada
vmontesinos@mat.upv.es
Coauthors: Marian Fabian, Václav Zizler

We present some known and some new facts about Gul’ko, descrip-
tive, Gruenhage, and fragmentable compact spaces. We show how they
reflect the geometrical structure of corresponding Banach spaces C(K).
In particular, we provide a proof of a recent renorming result of R. Smith
by a simple transfer of Day’s norm.
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About weakly Lindelöf C(X) not weakly Lindelöf Σ
M. Lopez Pellicer
Technical University of Valencia (Spain)
mlopezpe@mat.upv.es
Coauthors: J. Kakol

Cascales, Kakol, Saxon proved that in a large class G of locally con-
vex spaces E (containing all (LM)-spaces and (DF )-spaces all (LM)-
spaces (hence metrizable lcs), dual metric spaces (hence (DF )-spaces),
the space of distributions D′(Ω), real analytic functions A(Ω) for open
Ω ⊂ RN) for a locally convex space E ∈ G the weak topology σ(E, E′)
of E has countable tightness if and only if its weak dual (E′, σ(E′, E))
is K-analytic. Applying examples of Pol (and Kunen) one gets however
that there exist Banach spaces C(X) over a compact scattered space X
such that C(X) is not weakly K-analytic (even not weakly K-countably
determined under Continuum Hypothesis) but the weak dual of C(X)
has countable tightness. This provides also an example showing that
(gDF )-spaces need not be in class G.

Classifications of Borel sets and functions on an arbitrary topo-
logical space

Timofey Rodionov
Lomonosov Moscow State University, Moscow, Russia
t.v.rodionov@gmail.com
Coauthors: Valeriy Zakharov

For Borel functions on a perfect normal space and, respectively, on
a perfect topological space there are two famous convergence Baire clas-
sifications: the first one is due to H.Lebesgue and F.Hausdorff and the
second one is due to S.Banach.

However, for an arbitrary topological space the both classifications
are not valid. In this paper the Baire convergence classifications of Borel
functions on an arbitrary space are given. One convergence classification
starts with some family of measurable functions and the other starts with
some family of uniform functions.

These classifications of Borel functions use two classifications of Borel
sets; one of them generalizes the Young-Hausdorff classification for a
perfect space, the other is new.
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A theorem in memory of Susanne Dierolf

Stephen A. Saxon
Department of Mathematics, University of Florida
stephen saxon@yahoo.com

An important result of Prof. S. Dierolf says that every barrelled
locally convex topological space E with E′ 6= E∗ has a dense infinite-
codimensional subspace [4.6.6 in Prez Carreras/Bonet’s book]. A recent
preprint [Saxon, Mackey hyperplanes and enlargements for Tweddle’s
spaces] properly relaxes the hypothesis: If the dense hyperplanes of a
primitive space E with E′ 6= E∗ are Mackey, then E has a dense infinite-
codimensional subspace. This talk sketches the proof as it borrows from
and adds to ideas of Levin/Saxon/Tweddle/Valdivia.

Category-like (barrelled/Baire–like) properties of Cc(X) and
bounding/compact properties in X

Aaron R. Todd
Baruch College, CUNY
artodd@panix.com

For a Tychonoff space X, let Cc(X) be the linear space of continuous
realvalued functions on X given the compact-open topology. Moving be-
yond the Nachbin/Shirota characterization of barrelled Cc(X), in terms
of X, Lehner [L] supplied characterizations, in terms of X, for Saxon’s
Bairelike and unordered Bairelike properties on Cc(X) [S, TS]. We report
on an example, in the positive direction, to question 6.1 of [TR] which
uses Kunen’s weak P-points in the Stone-Cech growth ω∗ = βω\ω of the
non-negative integers: Specifically, there is an unordered Bairelike Cc(X)
with X realcompact, but not strongly Hewitt, as defined by Kakol and
Sliwa [KS]. Further questions relate to the use of Cc(X) to characterize
X with countably compact (pseudocompact) growth X∗ = βX \X.
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The Controlled Separable Projection Property
for Banach Spaces

Marek Wójtowicz
Casimir the Great University, Bydgoszcz, Poland
mwojt@ukw.edu.pl

Let X be a nonseparable Banach space. The space X possesses the
Controlled Separable Projection Property (CSPP for short) if for ev-
ery two sequences (xn) and (x∗n) in X and X∗, respectively, there is a
continuous projection P on X such that

(i) P (X) is separable, and
(ii) (xn) and (x∗n) are contained in P (X) and P ∗(X∗), respectively.

Every WCD-(hence, every WCG-)space has the CSPP. The notion of
CSPP was introduced in 2002 by the present author [3] to the study
of the structure of quotient Banach spaces. In 2004 Banakh, Plichko
and Zagorodnyuk [1] studied the zero-set of a quadratic homogeneous
polynomial on X ∈ CSPP . Recently, Ferrer [2] obtained a characteri-
zation of C(K)-spaces which enjoy the CSPP, and showed that if Y is
a closed subspace of X ∈ CSPP such that (X/Y )∗ is weak*-separable,
then Y ∈ CSPP .

I shall present a few results on CSPP-spaces in the context of the
Separable Quotient Problem, e.g., the one below completes the above-
cited result by Ferrer.

Theorem. Let Y be a closed subspace of X ∈ CSPP . If the space
(X/Y )∗ is weak*-separable, then there is a separable and complemented
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subspace F of X such that X/Y is a quotient of F ; consequently, X/Y
is separable.

Corollary. Let X ∈ CSPP , and let (x∗n) be a linearly independent
sequence in X∗. Then the quotient space X/

⋂
kerx∗n is separable and of

infinite dimension.
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Topology and Dynamical Sys-
tems

Limits of Inverse Limits - Examples

Iztok Banič
FNM, University of Maribor
iztok.banic@uni-mb.si
Coauthors: Matevž Črepnjak (University of Maribor), Matej Merhar
(University of Maribor), Uroš Milutinović (University of Maribor)

We present examples of limits of sequences of inverse limits with
closed intervals and usc set-valued bonding functions with respect to the
Hausdorff metric.

Shadowing, internal chain transitivity and omega-limit sets

Andrew Barwell
University of Birmingham, UK
barwella@for.mat.bham.ac.uk
Coauthors: Chris Good (Birmingham, UK), Piotr Oprocha (Murcia,
Spain)

We discuss the role played by the pseudo-orbit tracing property
(shadowing) in determining when internally chain transitive sets are
omega-limit sets.
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Code and order equivalence in polygonal billiards

Jozef Bobok
KM FSv CVUT, Thakurova 7, 166 29 Praha 6, Czech Republic
bobok@mat.fsv.cvut.cz
Coauthors: Serge Troubetzkoy, Institut de mathématiques de Luminy
Luminy, Case 907, F-13288 Marseille Cedex 9, France

We compare two equivalence relations on polygonal billiards. We
show when code/order equivalent billiards have the same angles, resp.
are similar, resp. affinely similar.

On Ingram’s Conjecture

Henk Bruin
University of Surrey
H.Bruin@surrey.ac.uk
Coauthors: Marcy Barge, Sonja Štimac

Ingram’s conjecture states that the inverse limit spaces of two tent-
maps with different slopes have non-homeomorphic inverse limit spaces.
In this talk, I will present some new developments emerging from joint
work with Barge and Štimac.

Limits of inverse limits

Matevž Črepnjak
FNM, University of Maribor
matevz.crepnjak@uni-mb.si
Coauthors: Iztok Banič (University of Maribor), Matej Merhar (Univer-
sity of Maribor), Uroš Milutinović (University of Maribor)

We present the following problem: if a sequence of graphs of up-
per semicontinuous set-valued functions fn converges to the graph of a
function f , is it true that the sequence of corresponding inverse limits
obtained from fn converges to the inverse limit obtained from f?
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Uncountable omega-limit sets with isolated points

Chris Good
University of Birmingham
c.good@bham.ac.uk
Coauthors: Brian Raines, Rolf Suabedissen

The omega limit set W of (the critical point of) a tent map on [0, 1]
is a compact subset of the interval. In the countable case, we have an
exact topological description of W . In the uncountable case, W may be
a Cantor set, or the whole of the interval, or may be of intermediate
type, containing a Cantor set but also some other structure, including
isolated points. We discuss the structure in this latter case, for example
in this case the Cantor set may or may not be minimal.

Almost totally disconnected minimal systems

Roman Hric
Institute of Mathematics and Computer Science, Matej Bel University
and Slovak Academy of Sciences, Bansk Bystrica
hric@savbb.sk
Coauthors: Francisco Balibrea, Tomasz Downarowicz, Lubomı́r Snoha
and Vladimı́r Špitalský

In this talk I start with a brief survey of old and recent results on
topological structure of minimal sets in dynamical systems. Then I
present new results from a joint paper by Balibrea, Downarowicz, Hric,
Snoha and pitalsk, of the same title as the talk. We construct a new rich
class of minimal systems - almost totally disconnected minimal systems.
A topological space is said to be almost totally disconnected if the set
of its degenerate components is dense. We prove that an almost totally
disconnected compact metric space admits a minimal map if and only if
either it is a finite set or it has no isolated point. As a consequence we
obtain a topological characterization on minimal sets on dendrites and
local dendrites. We also prove that any infinite compact almost totally
disconnected space with no isolated point admits a minimal map with
arbitrary entropy.
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Dynamics of Induced Maps to Symmetric Products

Alejandro Illanes
Universidad Nacional Autonoma de Mexico
illanes@matem.unam.mx
Coauthors: Galo Higuera

Given a metric continuum X, the nth-symmetric product of X is
defined as Fn(X) = {A : A is a nonempty subset of X with at most
n elements}, Fn(X) is endowed with the Vietoris topology. Given a
continuous function f from X to X, the induced function fn is the map
from Fn(X) into Fn(X) given by fn(A) = f(A) (the image of A under
f). In this talk we discuss how some dynamic properties of the map f
are translated to dynamic properties of the map fn and vice versa.

Inverse limits and the problem of backward dynamics in eco-
nomics

Judy Kennedy
Lamar University
kennedy9905@gmail.com
Coauthors: Brian Raines, David Stockman

In several standard economics models, the problem of “backward dy-
namics” arises, i.e., from the model a map arises which is well defined
going backward in time, but it is not well defined going forward in time.
Of course, economists would like to predict the future, and need tech-
niques that can handle this situation. We use inverse limits to overcome
this problem, and have obtained both quantitative and quantitative re-
sults that apply to dynamic equilibrium models.

Entropy, horseshoes and homoclinic trajectories on trees,
graphs and dendrites

Zdeněk Kočan
Silesian University in Opava
zdenek.Kocan@math.slu.cz
Coauthors: Veronika Kurková, Michal Málek

It is known that the positiveness of topological entropy, the existence
of a horseshoe and the existence of a homoclinic trajectory are mutually
equivalent, for interval maps. The aim of the talk is to describe the re-
lations between the properties for continuous maps of trees, graphs and
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dendrites. We consider three different definitions of a horseshoe and two
different definitions of a homoclinic trajectory. For example, positive
topological entropy and the existence of a homoclinic trajectory are in-
dependent and neither of them implies the existence of any horseshoe in
the case of dendrites. Unfortunately, still there is an open problem, and
we formulate it at the end of the talk.

Blockers in hyperspaces

Pawel Krupski
Mathematical Institute, University of Wroclaw
Pawel.Krupski@math.uni.wroc.pl
Coauthors: Alejandro Illanes (UNAM, Mexico)

A closed subset B of a metric continuum X blocks a nonempty closed
set A ⊂ X if, for each continuous path p from [0, 1] into the hyperspace
2X (of closed nonempty subsets of X with the Hausdorff metric), there is
t < 1 such that p(t)∩B 6= ∅. Blockers can be viewed as a generalization
of closed separators. We prove that if X is a nondegenerate locally con-
nected continuum such that no finite subset separates X, then the family
B of all sets that block each subcontinuum of X is a capset in the Hilbert
cube 2X . In particular, B is homeomorphic to the pseudoboundary of
of the Hilbert cube [0, 1]∞.

Bounded orbits and preserving measure

Krystyna Kuperberg
Auburn University, Auburn, Alabama, USA
kuperkm@auburn.edu

In 1996, G. Kuperberg proved that every boundaryless 3-manifold M
admits a measure preserving C∞ non-singular flow. An orbit is bounded
if its closure is compact. The methods can be modified to obtain a
measure preserving C∞ non-singular flow with all orbits bounded on
any boundaryless 3-manifold.

Let U be an open cover of M . A flow has orbits bounded by U if
the closure of every of its orbits is contained in some element of U . It is
not known if every boundaryless 3-manifold M with a given open cover
U admits a nonsingular measure preserving flow with orbits bounded by
U .
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In particular, the question of G. Kuperberg, whether there exists a
measure preserving non-singular flow on R3 with all orbits of diameter
smaller than one, remains unanswered.

Laminations of the Unit Disk and Julia Sets

John C. Mayer
University of Alabama at Birmingham
mayer@math.uab.edu

A complex polynomial P of degree ≥ 2 always has a nonempty, per-
fect, nowhere dense fully invariant subset J(P ) of the complex plane
called its Julia set. On this set the map P is chaotic. By way of a clas-
sical theorem on change of variables around a fixed critical point, the
Böttkher Uniformization Theorem, a connection can be made between
the topological and dynamical structure of (connected) Julia sets and
invariant laminations of the unit disk, potentially a friendlier object of
study. For example, if we parameterize the unit circle by [0, 1), the map
on the unit circle which corresponds to a cubic polynomial is t 7→ 3t
(mod 1), a (deceptively) very simple map, until one considers what its
invariant subsets on the circle are. In this talk, we define invariant lami-
nations of the unit disk and their relation, in particular, to quadratic and
cubic Julia sets. We use this as a jumping-off point for open questions
about Julia sets and invariant laminations, and recent progress made on
some of them.

Dynamics of commuting maps of chainable continua

Christopher Mouron
Rhodes College
mouronc@rhodes.edu

A chainable continuum, X, and homeomorphisms, p, q : X −→ X,
are constructed with the following properties:

1. p ◦ q = q ◦ p

2. p, q have simple dynamics

3. p◦q is a positively continuum-wise fully expansive homeomorphism
that has positive entropy and is chaotic in the sense of both De-
vaney and Li-Yorke.
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Other related questions and properties are also explored.

On homogeneous Suslinian continua

Jacek Nikiel
Opole University, Poland
nikiel@math.uni.opole.pl
Coauthors: D. Daniel (Lamar University), L. B. Treybig (Texas A and
M University), H. M. Tuncali (Nipissing University), E. D. Tymchatyn
(University of Saskatchewan)

A (Hausdorff) continuum is Suslinian if it does not contain uncount-
ably many pairwise disjoint non-degenerate subcontinua. Existence of
non-metrizable Suslinian continua is equivalent to the negation of the
Suslin Hypothesis. However, no set-theoretic conditions are needed to
prove that (a) a homogeneous and non-degenerate Suslinian continuum is
a simple closed curve, and (b) each separable and homogeneous Suslinian
continuum is metrizable.

Shadowing, entropy and a homeomorphism of the pseudoarc

Piotr Oprocha
Departamento de Matemáticas, Universidad de Murcia, Murcia, Spain
oprocha@agh.edu.pl
Coauthors: Piotr Kościelniak (Jagiellonian University, Kraków, Poland)

In this talk we present a method of construction of continuous map
f : [0, 1] → [0, 1], such that f is topologically mixing, has the shadowing
property and the inverse limit of copies of [0, 1] with f as the bounding
map is the pseudoarc. This map indeuces a homeomorphism of the
pseudoarc with the shadowing property and positive topological entropy.
We therefore answer, in the affirmative, a question posed by Chen and
Li in 1993 whether such a homeomorphism exists.
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Combinatorial Classification of Cubic Polynomials with a fixed
Siegel Disk

Ross Ptacek
University of Alabama at Birmingham
rptacek@gmail.com
Coauthors: John Mayer

In this poster we will consider the dynamics of polynomial maps of
the form z 7→ λz + a1z

2 + a2z
3 where λ = e2πiθ and 0 < θ < 1 is an

irrational number of Brjuno type. In this case, the map is linearizable
in a neighborhood of the fixed point at 0, and the maximal such neigh-
borhood is called a Siegel Disk. One of the critical points of the map
always accumulates on the boundary of the Siegel Disk. Next, we adopt
the parameterization of Zakeri by first marking the critical points such
that the first critical point under the marking is always 1 and then tak-
ing affine conjugacy classes which respect the marking. A cubic with
the above form which has its second critical point at c has the form
Pc : z 7→ λz(1− 1

2 (1 + 1
c )z + 1

3cz2). Zakeri defines the cubic connected-
ness locus M(θ) to be points c ∈ C such that the orbits of 1 and c under
Pc are bounded. The components of the interior of M(θ) are classified
by how the critical point not necessarily associated with the Siegel disk
behaves, also called the “free” critical point. Of particular interest to
us are the so-called capture components, in which the free critical point
eventually maps into the Siegel Disk. Let C be the union of the closures
of all capture components. We define the Principal Capture Locus to be
the largest component of C. We first define a natural numbering of the
capture components that make up C and then develop a combinatorial
classification of the dynamics of maps Pc, c ∈ C using laminations, a
simply connected model for polynomial dynamics.

On Ingram’s Conjecture

Sonja Štimac
University of Zagreb, Croatia
sonja@math.hr
Coauthors: Marcy Barge, Henk Bruin

In recent years there has been intensive research of topological prop-
erties of inverse limit spaces of tent maps with classification of these
spaces as ultimate goal. The Ingram conjecture claims that two inverse
limits of tent maps with different slopes are not homeomorphic. I will
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discuss recent progress on Ingram’s conjecture emerging from joint work
with Barge and Bruin.

Transverse Foliations to nonsingular Morse-Smale flows and
Bott-integrable Hamiltonian systems

Michael C. Sullivan
Southern Illinois University
msulliva@math.siu.edu

We apply results of Goodman, Yano and Wada to determine which
nonsingular Morse-Smale flows on the 3-sphere have transverse foliations.
We then observe that there is a connection to flows arising from certain
Hamiltonian systems and from certain contact structures. Recent work
by Cordero et al might allow us to extend these results to S2 × S1.

Remarks on Countable Rank Maps

Murat Tuncali
Nipissing University
muratt@nipissingu.ca
Coauthors: Pawel Krupski (University of Wroclaw, Poland)

Let f : X −→ Y be a function and let m be an infinite cardinal. Then
we say that the rank of f is ≤ m if |{y ∈ Y : |f−1(y)| > 1}| ≤ m.
If m = ℵ0, then f is of countable rank. In this talk, some results
concerning projective classes of countable rank maps will be presented.



Topology in Dynamical Systems 77

Maximal Dendrtes Embedded in Locally Connected Continua

Verónica Mart́ınez de la Vega
Instituto de Matemáticas, Universidad Nacional Autónoma de México
vmvm@matem.unam.mx

We show that there exists a class of dendrtes C, such that for any
n greater than 2, and any locally connected continuum X of dimension
n, all dendrites of class C can be embedded in X, and that there exists
a locally connected continua Yn of dimension n, such that any dendrite
that is not in C, can not be embedded in Yn. This result gives us a
characterization of dynamical properties of locally connected continua.
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