We examine the local stability of solutions of a delay stochastic nonlinear difference equation with deterministic and state-dependent Gaussian perturbations. We apply the degenerate Lyapunov–Krasovskii functional technique and construct a sequence of events, each term of which is defined by a bound on a normally distributed random variable. Local stability holds on the intersection of these events, which has probability at least 1- γ, γ ∈ (0, 1). This probability can be made arbitrarily high by choosing the initial value sufficiently small. We also present a generalization to systems where a condition for stability is expressed in terms of the diagonal part of the unperturbed system, and computer simulations which illustrate our results.
Druh výsledku
článek v časopise v databázi Web of Science
Popis